980 resultados para image-guided radiotherapy


Relevância:

100.00% 100.00%

Publicador:

Resumo:

An interleaved, dual resonance, volume localization technique for $\sp1$H/$\sp{31}$P magnetic resonance spectroscopy has been designed, implemented on a 2 T imager/spectrometer, and verified with phantom studies.^ Localization techniques, including several single voxel techniques and spectroscopic imaging, were implemented, and studies were performed to compare the efficiency of each sequence of $\sp1$H/$\sp{31}$P spectral acquisitions. The sequence chosen was a hybrid of the stimulated echo single voxel technique and the spectroscopic imaging technique.^ Water suppression during the $\sp1$H spectral acquisitions was accomplished by the use of three narrow bandwidth RF saturation pulses in combination with three spoiler gradients. The spoiler gradient amplitudes were selected on the basis of a numerical solution of the Bloch equations. A post-acquisition water suppression algorithm was used to minimize any residual water signal.^ For interleaved $\sp1$H/$\sp{31}$P acquisitions, a dual resonance RF coil was constructed and interfaced to the existing RF detection system via a custom-designed dual resonance transcoupler and switching system. Programmable attenuators were incorporated to allow for changes in receiver and transmitter attenuation "on the fly".^ To provide the rapidly switched gradient fields required for the $\sp1$H/$\sp{31}$P acquisitions, an actively screened gradient coil system was designed and implemented. With this system, gradient field rise times on the order of 100 $\mu$s were obtained. These rapid switching times were necessary for minimizing intrasequence delays and for improving localization quality and water suppression efficiency.^ The interleaved $\sp1$H/$\sp{31}$P volume localization technique was tested using a two-compartment phantom. Analysis of the data showed that the spectral contamination was less than three percent. One-to-one spatial correspondence of the $\sp1$H and $\sp{31}$P spectra was verified and allowed for direct correlation of the spectral data with a standard magnetic resonance image. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Laparoscopic instrument tracking systems are an essential component in image-guided interventions and offer new possibilities to improve and automate objective assessment methods of surgical skills. In this study we present our system design to apply a third generation optical pose tracker (Micron- Tracker®) to laparoscopic practice. A technical evaluation of this design is performed in order to analyze its accuracy in computing the laparoscopic instrument tip position. Results show a stable fluctuation error over the entire analyzed workspace. The relative position errors are 1.776±1.675 mm, 1.817±1.762 mm, 1.854±1.740 mm, 2.455±2.164 mm, 2.545±2.496 mm, 2.764±2.342 mm, 2.512±2.493 mm for distances of 50, 100, 150, 200, 250, 300, and 350 mm, respectively. The accumulated distance error increases with the measured distance. The instrument inclination covered by the system is high, from 90 to 7.5 degrees. The system reports a low positional accuracy for the instrument tip.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Laparoscopic instrument tracking systems are a key element in image-guided interventions, which requires high accuracy to be used in a real surgical scenario. In addition, these systems are a suitable option for objective assessment of laparoscopic technical skills based on instrument motion analysis. This study presents a new approach that improves the accuracy of a previously presented system, which applies an optical pose tracking system to laparoscopic practice. A design enhancement of the artificial markers placed on the laparoscopic instrument as well as an improvement of the calibration process are presented as a means to achieve more accurate results. A technical evaluation has been performed in order to compare the accuracy between the previous design and the new approach. Results show a remarkable improvement in the fluctuation error throughout the measurement platform. Moreover, the accumulated distance error and the inclination error have been improved. The tilt range covered by the system is the same for both approaches, from 90º to 7.5º. The relative position error is better for the new approach mainly at close distances to the camera system

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Image-guided systems have recently been introduced for their application in liver surgery.We aimed to identify and propose suitable indications for image-guided navigation systems in the domain of open oncologic liver surgery and,more specifically, in the setting of liver resection with and without microwave ablation. Method Retrospective analysis was conducted in patients undergoing liver resection with and without microwave ablation using an intraoperative image-guided stereotactic system during three stages of technological development (accuracy: 8.4 ± 4.4 mm in phase I and 8.4 ± 6.5 mm in phase II versus 4.5 ± 3.6 mm in phase III). It was evaluated, in which indications image-guided surgery was used according to the different stages of technical development. Results Between 2009 and 2013, 65 patients underwent image-guided surgical treatment, resection alone (n=38), ablation alone (n =11), or a combination thereof (n =16). With increasing accuracy of the system, image guidance was progressively used for atypical resections and combined microwave ablation and resection instead of formal liver resection (p<0.0001). Conclusion Clinical application of image guidance is feasible, while its efficacy is subject to accuracy. The concept of image guidance has been shown to be increasingly efficient for selected indications in liver surgery. While accuracy of available technology is increasing pertaining to technological advancements, more and more previously untreatable scenarios such as multiple small, bilobar lesions and so-called vanishing lesions come within reach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis describes the development of an open-source system for virtual bronchoscopy used in combination with electromagnetic instrument tracking. The end application is virtual navigation of the lung for biopsy of early stage cancer nodules. The open-source platform 3D Slicer was used for creating freely available algorithms for virtual bronchscopy. Firstly, the development of an open-source semi-automatic algorithm for prediction of solitary pulmonary nodule malignancy is presented. This approach may help the physician decide whether to proceed with biopsy of the nodule. The user-selected nodule is segmented in order to extract radiological characteristics (i.e., size, location, edge smoothness, calcification presence, cavity wall thickness) which are combined with patient information to calculate likelihood of malignancy. The overall accuracy of the algorithm is shown to be high compared to independent experts' assessment of malignancy. The algorithm is also compared with two different predictors, and our approach is shown to provide the best overall prediction accuracy. The development of an airway segmentation algorithm which extracts the airway tree from surrounding structures on chest Computed Tomography (CT) images is then described. This represents the first fundamental step toward the creation of a virtual bronchoscopy system. Clinical and ex-vivo images are used to evaluate performance of the algorithm. Different CT scan parameters are investigated and parameters for successful airway segmentation are optimized. Slice thickness is the most affecting parameter, while variation of reconstruction kernel and radiation dose is shown to be less critical. Airway segmentation is used to create a 3D rendered model of the airway tree for virtual navigation. Finally, the first open-source virtual bronchoscopy system was combined with electromagnetic tracking of the bronchoscope for the development of a GPS-like system for navigating within the lungs. Tools for pre-procedural planning and for helping with navigation are provided. Registration between the lungs of the patient and the virtually reconstructed airway tree is achieved using a landmark-based approach. In an attempt to reduce difficulties with registration errors, we also implemented a landmark-free registration method based on a balanced airway survey. In-vitro and in-vivo testing showed good accuracy for this registration approach. The centreline of the 3D airway model is extracted and used to compensate for possible registration errors. Tools are provided to select a target for biopsy on the patient CT image, and pathways from the trachea towards the selected targets are automatically created. The pathways guide the physician during navigation, while distance to target information is updated in real-time and presented to the user. During navigation, video from the bronchoscope is streamed and presented to the physician next to the 3D rendered image. The electromagnetic tracking is implemented with 5 DOF sensing that does not provide roll rotation information. An intensity-based image registration approach is implemented to rotate the virtual image according to the bronchoscope's rotations. The virtual bronchoscopy system is shown to be easy to use and accurate in replicating the clinical setting, as demonstrated in the pre-clinical environment of a breathing lung method. Animal studies were performed to evaluate the overall system performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Manipulation of single cells and particles is important to biology and nanotechnology. Our electrokinetic (EK) tweezers manipulate objects in simple microfluidic devices using gentle fluid and electric forces under vision-based feedback control. In this dissertation, I detail a user-friendly implementation of EK tweezers that allows users to select, position, and assemble cells and nanoparticles. This EK system was used to measure attachment forces between living breast cancer cells, trap single quantum dots with 45 nm accuracy, build nanophotonic circuits, and scan optical properties of nanowires. With a novel multi-layer microfluidic device, EK was also used to guide single microspheres along complex 3D trajectories. The schemes, software, and methods developed here can be used in many settings to precisely manipulate most visible objects, assemble objects into useful structures, and improve the function of lab-on-a-chip microfluidic systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: Undergraduate students studying the Bachelor of Radiation Therapy at Queensland University of Technology (QUT) attend clinical placements in a number of department sites across Queensland. To ensure that the curriculum prepares students for the most common treatments and current techniques in use in these departments, a curriculum matching exercise was performed. Methods: A cross-sectional census was performed on a pre-determined “Snapshot” date in 2012. This was undertaken by the clinical education staff in each department who used a standardized proforma to count the number of patients as well as prescription, equipment, and technique data for a list of tumour site categories. This information was combined into aggregate anonymized data. Results: All 12 Queensland radiation therapy clinical sites participated in the Snapshot data collection exercise to produce a comprehensive overview of clinical practice on the chosen day. A total of 59 different tumour sites were treated on the chosen day and as expected the most common treatment sites were prostate and breast, comprising 46% of patients treated. Data analysis also indicated that intensity-modulated radiotherapy (IMRT) use is relatively high with 19.6% of patients receiving IMRT treatment on the chosen day. Both IMRT and image-guided radiotherapy (IGRT) indications matched recommendations from the evidence. Conclusion: The Snapshot method proved to be a feasible and efficient method of gathering useful

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: Flat-detector, cone-beam computed tomography (CBCT) has enormous potential to improve the accuracy of treatment delivery in image-guided radiotherapy (IGRT). To assist radiotherapists in interpreting these images, we use a Bayesian statistical model to label each voxel according to its tissue type. Methods: The rich sources of prior information in IGRT are incorporated into a hidden Markov random field (MRF) model of the 3D image lattice. Tissue densities in the reference CT scan are estimated using inverse regression and then rescaled to approximate the corresponding CBCT intensity values. The treatment planning contours are combined with published studies of physiological variability to produce a spatial prior distribution for changes in the size, shape and position of the tumour volume and organs at risk (OAR). The voxel labels are estimated using the iterated conditional modes (ICM) algorithm. Results: The accuracy of the method has been evaluated using 27 CBCT scans of an electron density phantom (CIRS, Inc. model 062). The mean voxel-wise misclassification rate was 6.2%, with Dice similarity coefficient of 0.73 for liver, muscle, breast and adipose tissue. Conclusions: By incorporating prior information, we are able to successfully segment CBCT images. This could be a viable approach for automated, online image analysis in radiotherapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cone-beam computed tomography (CBCT) has enormous potential to improve the accuracy of treatment delivery in image-guided radiotherapy (IGRT). To assist radiotherapists in interpreting these images, we use a Bayesian statistical model to label each voxel according to its tissue type. The rich sources of prior information in IGRT are incorporated into a hidden Markov random field model of the 3D image lattice. Tissue densities in the reference CT scan are estimated using inverse regression and then rescaled to approximate the corresponding CBCT intensity values. The treatment planning contours are combined with published studies of physiological variability to produce a spatial prior distribution for changes in the size, shape and position of the tumour volume and organs at risk. The voxel labels are estimated using iterated conditional modes. The accuracy of the method has been evaluated using 27 CBCT scans of an electron density phantom. The mean voxel-wise misclassification rate was 6.2\%, with Dice similarity coefficient of 0.73 for liver, muscle, breast and adipose tissue. By incorporating prior information, we are able to successfully segment CBCT images. This could be a viable approach for automated, online image analysis in radiotherapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction This investigation aimed to assess the consistency and accuracy of radiation therapists (RTs) performing cone beam computed tomography (CBCT) alignment to fiducial markers (FMs) (CBCTFM) and the soft tissue prostate (CBCTST). Methods Six patients receiving prostate radiation therapy underwent daily CBCTs. Manual alignment of CBCTFM and CBCTST was performed by three RTs. Inter-observer agreement was assessed using a modified Bland–Altman analysis for each alignment method. Clinically acceptable 95% limits of agreement with the mean (LoAmean) were defined as ±2.0 mm for CBCTFM and ±3.0 mm for CBCTST. Differences between CBCTST alignment and the observer-averaged CBCTFM (AvCBCTFM) alignment were analysed. Clinically acceptable 95% LoA were defined as ±3.0 mm for the comparison of CBCTST and AvCBCTFM. Results CBCTFM and CBCTST alignments were performed for 185 images. The CBCTFM 95% LoAmean were within ±2.0 mm in all planes. CBCTST 95% LoAmean were within ±3.0 mm in all planes. Comparison of CBCTST with AvCBCTFM resulted in 95% LoA of −4.9 to 2.6, −1.6 to 2.5 and −4.7 to 1.9 mm in the superior–inferior, left–right and anterior–posterior planes, respectively. Conclusions Significant differences were found between soft tissue alignment and the predicted FM position. FMs are useful in reducing inter-observer variability compared with soft tissue alignment. Consideration needs to be given to margin design when using soft tissue matching due to increased inter-observer variability. This study highlights some of the complexities of soft tissue guidance for prostate radiation therapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aim Simulation forms an increasingly vital component of clinical skills development in a wide range of professional disciplines. Simulation of clinical techniques and equipment is designed to better prepare students for placement by providing an opportunity to learn technical skills in a “safe” academic environment. In radiotherapy training over the last decade or so this has predominantly comprised treatment planning software and small ancillary equipment such as mould room apparatus. Recent virtual reality developments have dramatically changed this approach. Innovative new simulation applications and file processing and interrogation software have helped to fill in the gaps to provide a streamlined virtual workflow solution. This paper outlines the innovations that have enabled this, along with an evaluation of the impact on students and educators. Method Virtual reality software and workflow applications have been developed to enable the following steps of radiation therapy to be simulated in an academic environment: CT scanning using a 3D virtual CT scanner simulation; batch CT duplication; treatment planning; 3D plan evaluation using a virtual linear accelerator; quantitative plan assessment, patient setup with lasers; and image guided radiotherapy software. Results Evaluation of the impact of the virtual reality workflow system highlighted substantial time saving for academic staff as well as positive feedback from students relating to preparation for clinical placements. Students valued practice in the “safe” environment and the opportunity to understand the clinical workflow ahead of clinical department experience. Conclusion Simulation of most of the radiation therapy workflow and tasks is feasible using a raft of virtual reality simulation applications and supporting software. Benefits of this approach include time-saving, embedding of a case-study based approach, increased student confidence, and optimal use of the clinical environment. Ongoing work seeks to determine the impact of simulation on clinical skills.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

INTRODUCTION: The treatment of choice for early glottic cancer is still being debated; ultimately it relies on the functional outcome. This paper reports on a novel sparing 4D conformal technique for single vocal cord irradiation (SVCI).

MATERIAL AND METHODS: The records of 164 T1a patients with SCC of the vocal cord, irradiated in the Erasmus MC between 2000 and 2008, were analyzed for local control and overall survival. The quality of life was determined by EORTC H&N35 questionnaires. Also the VHI (voice handicap index), and the TSH (thyroid stimulating hormone) blood levels, were established. On-line image guided SVCI, using cone beam CT or stereotactic radiation therapy (SRT) techniques, were developed.

RESULTS: A LC rate at five-years of 93% and a VHI of 12.7 (0-63) was determined. It appeared feasible to irradiate one vocal cord within 1-2mm accuracy. This way sparing of the contralateral (CL) vocal cord and CL normal tissues, could be achieved.

CONCLUSIONS: Given the accuracy (1-2mm) and small volume disease (CTV limited to one vocal cord), for the use of stereotactic RT techniques SVCI with large fraction sizes is currently being investigated in clinic. It is argued that hypofractionated SVCI can be a competitive alternative to laser surgery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Cone-beam computed tomography (CBCT) image-guided radiotherapy (IGRT) systems are widely used tools to verify and correct the target position before each fraction, allowing to maximize treatment accuracy and precision. In this study, we evaluate automatic three-dimensional intensity-based rigid registration (RR) methods for prostate setup correction using CBCT scans and study the impact of rectal distension on registration quality. METHODS: We retrospectively analyzed 115 CBCT scans of 10 prostate patients. CT-to-CBCT registration was performed using (a) global RR, (b) bony RR, or (c) bony RR refined by a local prostate RR using the CT clinical target volume (CTV) expanded with 1-to-20-mm varying margins. After propagation of the manual CT contours, automatic CBCT contours were generated. For evaluation, a radiation oncologist manually delineated the CTV on the CBCT scans. The propagated and manual CBCT contours were compared using the Dice similarity and a measure based on the bidirectional local distance (BLD). We also conducted a blind visual assessment of the quality of the propagated segmentations. Moreover, we automatically quantified rectal distension between the CT and CBCT scans without using the manual CBCT contours and we investigated its correlation with the registration failures. To improve the registration quality, the air in the rectum was replaced with soft tissue using a filter. The results with and without filtering were compared. RESULTS: The statistical analysis of the Dice coefficients and the BLD values resulted in highly significant differences (p<10(-6)) for the 5-mm and 8-mm local RRs vs the global, bony and 1-mm local RRs. The 8-mm local RR provided the best compromise between accuracy and robustness (Dice median of 0.814 and 97% of success with filtering the air in the rectum). We observed that all failures were due to high rectal distension. Moreover, the visual assessment confirmed the superiority of the 8-mm local RR over the bony RR. CONCLUSION: The most successful CT-to-CBCT RR method proved to be the 8-mm local RR. We have shown the correlation between its registration failures and rectal distension. Furthermore, we have provided a simple (easily applicable in routine) and automatic method to quantify rectal distension and to predict registration failure using only the manual CT contours.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Obiettivo: valutare la tossicità ed il controllo di malattia di un trattamento radioterapico ipofrazionato ad alte dosi con tecnica ad intensità modulata (IMRT) guidata dalle immagini (IGRT) in pazienti affetti da carcinoma prostatico a rischio intermedio, alto ed altissimo di recidiva. Materiali e metodi: tutti i pazienti candidati al trattamento sono stati stadiati e sottoposti al posizionamento di tre “markers” fiduciali intraprostatici necessari per l’IGRT. Mediante tecnica SIB – IMRT sono stati erogati alla prostata 67,50 Gy in 25 frazioni (EQD2 = 81 Gy), alle vescichette 56,25 Gy in 25 frazioni (EQD2 = 60,35 Gy) e ai linfonodi pelvici, qualora irradiati, 50 Gy in 25 frazioni. La tossicità gastrointestinale (GI) e genitourinaria (GU) è stata valutata mediante i CTCAE v. 4.03. Per individuare una possibile correlazione tra i potenziali fattori di rischio e la tossicità registrata è stato utilizzato il test esatto di Fisher e la sopravvivenza libera da malattia è stata calcolata mediante il metodo di Kaplan-Meier. Risultati: sono stati arruolati 71 pazienti. Il follow up medio è di 19 mesi (3-35 mesi). Nessun paziente ha dovuto interrompere il trattamento per la tossicità acuta. Il 14% dei pazienti (10 casi) ha presentato una tossicità acuta GI G ≥ 2 e il 15% (11 pazienti) ha riportato una tossicità acuta GU G2. Per quanto riguarda la tossicità tardiva GI e GU G ≥ 2, essa è stata documentata, rispettivamente, nel 14% dei casi (9 pazienti) e nell’11% (7 pazienti). Non è stata riscontrata nessuna tossicità, acuta o cronica, G4. Nessun fattore di rischio correlava con la tossicità. La sopravvivenza libera da malattia a 2 anni è del 94%. Conclusioni: il trattamento radioterapico ipofrazionato ad alte dosi con IMRT-IGRT appare essere sicuro ed efficace. Sono comunque necessari ulteriori studi per confermare questi dati ed i presupposti radiobiologici dell’ipofrazionamento del carcinoma prostatico.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND Clinical prognostic groupings for localised prostate cancers are imprecise, with 30-50% of patients recurring after image-guided radiotherapy or radical prostatectomy. We aimed to test combined genomic and microenvironmental indices in prostate cancer to improve risk stratification and complement clinical prognostic factors. METHODS We used DNA-based indices alone or in combination with intra-prostatic hypoxia measurements to develop four prognostic indices in 126 low-risk to intermediate-risk patients (Toronto cohort) who will receive image-guided radiotherapy. We validated these indices in two independent cohorts of 154 (Memorial Sloan Kettering Cancer Center cohort [MSKCC] cohort) and 117 (Cambridge cohort) radical prostatectomy specimens from low-risk to high-risk patients. We applied unsupervised and supervised machine learning techniques to the copy-number profiles of 126 pre-image-guided radiotherapy diagnostic biopsies to develop prognostic signatures. Our primary endpoint was the development of a set of prognostic measures capable of stratifying patients for risk of biochemical relapse 5 years after primary treatment. FINDINGS Biochemical relapse was associated with indices of tumour hypoxia, genomic instability, and genomic subtypes based on multivariate analyses. We identified four genomic subtypes for prostate cancer, which had different 5-year biochemical relapse-free survival. Genomic instability is prognostic for relapse in both image-guided radiotherapy (multivariate analysis hazard ratio [HR] 4·5 [95% CI 2·1-9·8]; p=0·00013; area under the receiver operator curve [AUC] 0·70 [95% CI 0·65-0·76]) and radical prostatectomy (4·0 [1·6-9·7]; p=0·0024; AUC 0·57 [0·52-0·61]) patients with prostate cancer, and its effect is magnified by intratumoral hypoxia (3·8 [1·2-12]; p=0·019; AUC 0·67 [0·61-0·73]). A novel 100-loci DNA signature accurately classified treatment outcome in the MSKCC low-risk to intermediate-risk cohort (multivariate analysis HR 6·1 [95% CI 2·0-19]; p=0·0015; AUC 0·74 [95% CI 0·65-0·83]). In the independent MSKCC and Cambridge cohorts, this signature identified low-risk to high-risk patients who were most likely to fail treatment within 18 months (combined cohorts multivariate analysis HR 2·9 [95% CI 1·4-6·0]; p=0·0039; AUC 0·68 [95% CI 0·63-0·73]), and was better at predicting biochemical relapse than 23 previously published RNA signatures. INTERPRETATION This is the first study of cancer outcome to integrate DNA-based and microenvironment-based failure indices to predict patient outcome. Patients exhibiting these aggressive features after biopsy should be entered into treatment intensification trials. FUNDING Movember Foundation, Prostate Cancer Canada, Ontario Institute for Cancer Research, Canadian Institute for Health Research, NIHR Cambridge Biomedical Research Centre, The University of Cambridge, Cancer Research UK, Cambridge Cancer Charity, Prostate Cancer UK, Hutchison Whampoa Limited, Terry Fox Research Institute, Princess Margaret Cancer Centre Foundation, PMH-Radiation Medicine Program Academic Enrichment Fund, Motorcycle Ride for Dad (Durham), Canadian Cancer Society.