903 resultados para compression


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thin-walled steel plates subjected to in-plane compression develop two types of local plastic mechanism, namely the roof-shaped mechanism and the so-called flip-disc mechanism, but the intriguing question of why two mechanisms should develop was not answered until recently. It was considered that the location of first yield point shifted from the centre of the plate to the midpoint of the longitudinal edge depending on the b/t ratio, imperfection level, and yield stress of steel, which then decided the type of mechanism. This paper has verified this hypothesis using analysis and laboratory experiments. An elastic analysis using Galerkin's method to solve Marguerre's equations was first used to determine the first yield point, based on which the local plastic mechanism/imperfection tolerance tables have been developed which give the type of mechanism as a function of b/t ratio, imperfection level and yield stress of steel. Laboratory experiments of thin-walled columns verified the imperfection tolerance tables and thus indirectly the hypothesis. Elastic and rigid-plastic curves were them used to predict the effect on the ultimate load due to the change of mechanism. A finite element analysis of selected cases also confirmed the results from simple analyses and experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The utility of a novel technique for determining the ignition delay in a compression ignition engine has been shown. This method utilises statistical modelling in the Bayesian paradigm to accurately resolve the start of combustion from a band-pass in-cylinder pressure signal. Applied to neat diesel and six biofuels, including four fractionations of palm oil of varying carbon chain length and degree of unsaturation, the relationships between ignition delay, cetane number and oxygen content have been explored. It is noted that the expected negative relationship between ignition delay and cetane number held, as did the positive relationship between ignition delay and oxygen content. The degree of unsaturation was also identified as a potential factor influencing the ignition delay.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Flexible fixation or the so-called ‘biological fixation’ has been shown to encourage the formation of fracture callus, leading to better healing outcomes. However, the nature of the relationship between the degree of mechanical stability provided by a flexible fixation and the optimal healing outcomes has not been fully understood. In this study, we have developed a validated quantitative model to predict how cells in fracture callus might respond to change in their mechanical microenvironment due to different configurations of locking compression plate (LCP) in clinical practice, particularly in the early stage of healing. The model predicts that increasing flexibility of the LCP by changing the bone–plate distance (BPD) or the plate working length (WL) could enhance interfragmentary strain in the presence of a relatively large gap size (.3 mm). Furthermore, conventional LCP normally results in asymmetric tissue development during early stage of callus formation, and the increase of BPD or WL is insufficient to alleviate this problem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper focuses on the use of externally bonded Carbon Fiber Reinforced Polymer (CFRP) materials to strengthen steel plates subjected to compression. A fully slender steel section was selected in this test programme. CFRP strengthened steel plates and non strengthened plates were tested to fail under compressive load. The middle part of the strut was strengthened using CFRP sheet. The length of the strengthened zone was varied. Eight specimens were tested in this test programme. The test results showed a significant strength gain of 47% and delaying of lateral torsional buckling failure mode of strengthened members. This study confirms that there is great potential to increase the short term performance of CFRP strengthened steel structure under axial compression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Australian masonry standard allows either prism tests or correction factors based on the block height and mortar thickness to evaluate masonry compressive strength. The correction factor helps the taller units with conventional 10 mm mortar being not disadvantaged due to size effect. In recent times, 2-4 mm thick, high-adhesive mortars and H blocks with only the mid-web shell are used in masonry construction. H blocks and thinner and higher adhesive mortars have renewed interest of the compression behaviour of hollow concrete masonry and hence is revisited in this paper. This paper presents an experimental study carried out to examine the effects of the thickness of mortar joints, the type of mortar adhesives and the presence of web shells in the hollow concrete masonry prisms under axial compression. A non-contact digital image correlation technique was used to measure the deformation of the prisms and was found adequate for the determination of strain fi eld of the loaded face shells subjected to axial compression. It is found that the absence of end web shells lowers the compressive strength and stiffness of the prisms and the thinner and higher adhesive mortars increase the compressive strength and stiffness, while lowering the Poisson's ratio. © Institution of Engineers Australia, 2013.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since World War I, explosions have accounted for over 70% of all injuries in conflict. With the development of improved personnel protection of the torso, improved medical care and faster aeromedical evacuation, casualties are surviving with more severe injuries to the extremities. Understanding the processes involved in the transfer of blast-induced shock waves through biological tissues is essential for supporting efforts aimed at mitigating and treating blast injury. Given the inherent heterogeneities in the human body, we argue that studying these processes demands a highly integrated approach requiring expertise in shock physics, biomechanics and fundamental biological processes. This multidisciplinary systems approach enables one to develop the experimental framework for investigating the material properties of human tissues that are subjected to high compression waves in blast conditions and the fundamental cellular processes altered by this type of stimuli. Ultimately, we hope to use the information gained from these studies in translational research aimed at developing improved protection for those at risk and improved clinical outcomes for those who have been injured from a blast wave.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, an LPG fumigation system was fitted to a Euro III compression ignition (CI) engine to explore its impact on performance, and gaseous and particulate emissions. LPG was introduced to the intake air stream (as a secondary fuel) by using a low pressure fuel injector situated upstream of the turbocharger. LPG substitutions were test mode dependent, but varied in the range of 14-29% by energy. The engine was tested over a 5 point test cycle using ultra low sulphur diesel (ULSD), and a low and high LPG substitution at each test mode. The results show that LPG fumigation coerces the combustion into pre-mixed mode, as increases in the peak combustion pressure (and the rate of pressure rise) were observed in most tests. The emissions results show decreases in nitric oxide (NO) and particulate matter (PM2.5) emissions; however, very significant increases in carbon monoxide (CO) and hydrocarbon (HC) emissions were observed. A more detailed investigation of the particulate emissions showed that the number of particles emitted was reduced with LPG fumigation at all test settings – apart from mode 6 of the ECE R49 test cycle. Furthermore, the particles emitted generally had a slightly larger median diameter with LPG fumigation, and had a smaller semi-volatile fraction relative to ULSD. Overall, the results show that with some modifications, LPG fumigation systems could be used to extend ULSD supplies without adversely impacting on engine performance and emissions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Current design rules for the member capacities of cold-formed steel columns are based on the same non-dimensional strength curve for both fixed and pinned-ended columns at ambient temperature. This research has investigated the accuracy of using current ambient temperature design rules in Australia/New Zealand (AS/NZS 4600), American (AISI S100) and European (Eurocode 3 Part 1.3) standards in determining the flexural–torsional buckling capacities of cold-formed steel columns at uniform elevated temperatures using appropriately reduced mechanical properties. It was found that these design rules accurately predicted the member capacities of pin ended lipped channel columns undergoing flexural torsional buckling at elevated temperatures. However, for fixed ended columns with warping fixity undergoing flexural–torsional buckling, the current design rules significantly underestimated the column capacities as they disregard the beneficial effect of warping fixity. This paper has therefore recommended the use of improved design rules developed for ambient temperature conditions to predict the axial compression capacities of fixed ended columns subject to flexural–torsional buckling at elevated temperatures within AS/NZS 4600 and AISI S100 design provisions. The accuracy of the proposed fire design rules was verified using finite element analysis and test results of cold-formed lipped channel columns at elevated temperatures except for low strength steel columns with intermediate slenderness whose behaviour was influenced by the increased nonlinearity in the stress–strain curves at elevated temperatures. Further research is required to include these effects within AS/NZS 4600 and AISI S100 design rules. However, Eurocode 3 Part 1.3 design rules can be used for this purpose by using suitable buckling curves as recommended in this paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis is a comprehensive study of microalgae biodiesel for the compression ignition engine. It examines microalgae growing conditions, the extraction process and physiochemical properties with a wide range of microalgae species. It also evaluates microalgae biodiesel with regards to engine performance and emission characteristics and explains the difficulties and potentiality of microalgae as a biodiesel. In doing so, an extensive analysis of different extraction methods and engine testing was conducted and a comprehensive study on microalgae biodiesel is presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Preneel, Govaerts and Vandewalle (PGV) analysed the security of single-block-length block cipher based compression functions assuming that the underlying block cipher has no weaknesses. They showed that 12 out of 64 possible compression functions are collision and (second) preimage resistant. Black, Rogaway and Shrimpton formally proved this result in the ideal cipher model. However, in the indifferentiability security framework introduced by Maurer, Renner and Holenstein, all these 12 schemes are easily differentiable from a fixed input-length random oracle (FIL-RO) even when their underlying block cipher is ideal. We address the problem of building indifferentiable compression functions from the PGV compression functions. We consider a general form of 64 PGV compression functions and replace the linear feed-forward operation in this generic PGV compression function with an ideal block cipher independent of the one used in the generic PGV construction. This modified construction is called a generic modified PGV (MPGV). We analyse indifferentiability of the generic MPGV construction in the ideal cipher model and show that 12 out of 64 MPGV compression functions in this framework are indifferentiable from a FIL-RO. To our knowledge, this is the first result showing that two independent block ciphers are sufficient to design indifferentiable single-block-length compression functions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Compression is desirable for network applications as it saves bandwidth; however, when data is compressed before being encrypted, the amount of compression leaks information about the amount of redundancy in the plaintext. This side channel has led to successful CRIME and BREACH attacks on web traffic protected by the Transport Layer Security (TLS) protocol. The general guidance in light of these attacks has been to disable compression, preserving confidentiality but sacrificing bandwidth. In this paper, we examine two techniques - heuristic separation of secrets and fixed-dictionary compression|for enabling compression while protecting high-value secrets, such as cookies, from attack. We model the security offered by these techniques and report on the amount of compressibility that they can achieve.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The security of permutation-based hash functions in the ideal permutation model has been studied when the input-length of compression function is larger than the input-length of the permutation function. In this paper, we consider permutation based compression functions that have input lengths shorter than that of the permutation. Under this assumption, we propose a permutation based compression function and prove its security with respect to collision and (second) preimage attacks in the ideal permutation model. The proposed compression function can be seen as a generalization of the compression function of MD6 hash function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we analyze the SHAvite-3-512 hash function, as proposed and tweaked for round 2 of the SHA-3 competition. We present cryptanalytic results on 10 out of 14 rounds of the hash function SHAvite-3-512, and on the full 14 round compression function of SHAvite-3-512. We show a second preimage attack on the hash function reduced to 10 rounds with a complexity of 2497 compression function evaluations and 216 memory. For the full 14-round compression function, we give a chosen counter, chosen salt preimage attack with 2384 compression function evaluations and 2128 memory (or complexity 2448 without memory), and a collision attack with 2192 compression function evaluations and 2128 memory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cold-formed steel members have been widely used in residential and commercial buildings as primary load bearing structural elements. They are often made of thin steel sheets and hence they are more susceptible to local buckling. The buckling behaviour of cold-formed steel compression members under fire conditions is not fully investigated yet and hence there is a lack of knowledge on the fire performance of cold-formed steel compression members. Current cold-formed steel design standards do not provide adequate design guidelines for the fire design of cold-formed steel compression members. Therefore a research project based on extensive experimental and numerical studies was undertaken to investigate the local buckling behaviour of light gauge cold-formed steel compression members under simulated fire conditions. First a series of 91 local buckling tests was conducted at ambient and uniform elevated temperatures up to 700oC on cold-formed lipped and unlipped channels. Suitable finite element models were then developed to simulate the behaviour of tested columns and were validated using test results. All the ultimate load capacity results for local buckling were compared with the predictions from the available design rules based on AS/NZS 4600, BS 5950 Part 5, Eurocode 3 Parts 1.2 and 1.3 and the direct strength method (DSM), based on which suitable recommendations have been made for the fire design of cold-formed steel compression members subject to local buckling at uniform elevated temperatures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a combined experimental and numerical study on the behaviour of both circular and square concrete-filled steel tube (CFT) stub columns under local compression. Twelve circular and eight square CFT stub columns were tested to study their bearing capacity and the key influential parameters. A 3D finite element model was established for simulation and parametric study to investigate the structural behaviour of the stub columns. The numerical results agreed well with the experimental results. In addition, analytical formulas were proposed to calculate the load bearing capacity of CFT stub columns under local compression.