973 resultados para Water stress


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phytochromes are red/far-red light photoreceptors that mediate a variety of photomorphogenic processes in plants, from germination to flowering. In addition, there is evidence that phytochromes are also part of the stress signalling response, especially in response to water deficit stress, which is the major abiotic factor limiting plant growth and crop productivity worldwide. In this study, we used the phyA (far red-insensitive; fri), phyB1 (temporary red-insensitive; tri) and phyB2 mutants of tomato (Solanum lycopersicum L.) to study the roles of these three phytochromes in drought stress responses. Compared to wild type (WT) plants grown under water-deficit stress conditions, the fri, tri, and phyB2 mutants did not exhibit altered dry weights, leaf areas, stomatal densities, or stomatal opening. The stomatal conductance of all three mutants was severely reduced under both fully-hydrated and water-deficit conditions. Although relative water contents did change after drought stress in each mutant, the most significant reduction in water potential during water stress was observed in the fri mutant. However, this mutant returned its water status to WT levels during rehydration. Although the phyB2 mutant lost more water from detached leaves during abscisic acid (ABA) treatment, phyB2 behaved like WT plants, indicating that this mutant was not insensitive to ABA. Overall, these results indicate that the phytochromes phyA, phyB1, and phyB2 modulate drought stress responses in tomato.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Studies involving amplified fragment length polymorphism (cDNA-AFLP) have often used polyacrylamide gels with radiolabeled primers in order to establish best primer combinations, to analyze, and to recover transcript-derived fragments. Use of automatic sequencer to establish best primer combinations is convenient, because it saves time, reduces costs and risks of contamination with radioactive material and acrylamide, and allows objective band-matching and more precise evaluation of transcript-derived fragments intensities. This study aimed at examining the gene expression of commercial cultivars of P. guajava subjected to water and mechanical injury stresses, combining analyses by automatic sequencer and fluorescent kits for polyacrylamide gel electrophoresis. Firstly, 64 combinations of EcoRI and MseI primers were tested. Ten combinations with higher number of polymorphic fragments were then selected for transcript-derived fragments recovering and cluster analysis, involving 45 saplings of P. guajava. Two groups were obtained, one composed by the control samplings, and another formed by samplings undergoing stress, with no clear distinction between stress treatments. The results revealed the convenience of using a combination of automatic sequencer and fluorescent kits for polyacrylamide gel electrophoreses to examine gene expression profiles. The Unweighted Pair Group Method with Arithmetic Mean analysis using Euclidean distances points out a similar induced response mechanism of P. guajava undergoing water stress and mechanical injury.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is increasing recognition that transdisciplinary approaches are needed to create suitable knowledge for sustainable water management. However, there is no common understanding of what transdisciplinary research may be and there is very limited debate on potentials and challenges regarding its implementation. Against this background, this paper presents a conceptual framework for transdisciplinary co-production of knowledge in water management projects oriented towards more sustainable use of water. Moreover, first experiences with its implementation are discussed. In so doing, the focus lies on potentials and challenges related to the co-production of systems, target and transformation knowledge by researchers and local stakeholders.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Herbivore-induced systemic resistance occurs in many plants and is commonly assumed to be adaptive. The mechanisms triggered by leaf-herbivores that lead to systemic resistance are largely understood, but it remains unknown how and why root herbivory also increases resistance in leaves. To resolve this, we investigated the mechanism by which the root herbivore Diabrotica virgifera induces resistance against lepidopteran herbivores in the leaves of Zea mays. Diabrotica virgifera infested plants suffered less aboveground herbivory in the field and showed reduced growth of Spodoptera littoralis caterpillars in the laboratory. Root herbivory did not lead to a jasmonate-dependent response in the leaves, but specifically triggered water loss and abscisic acid (ABA) accumulation. The induction of ABA by itself was partly responsible for the induction of leaf defenses, but not for the resistance against S. littoralis. Root-herbivore induced hydraulic changes in the leaves, however, were crucial for the increase in insect resistance. We conclude that the induced leaf resistance after root feeding is the result of hydraulic changes, which reduce the quality of the leaves for chewing herbivores. This finding calls into question whether root-herbivore induced leaf-resistance is an evolved response. © The Authors (2010). Journal compilation © New Phytologist Trust (2010).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent observed hydro-climatic changes in mountainous areas are of concern as they may directly affect capacity to fulfill water needs. The canton of Vaud in Western Switzerland is an example of such a region as it has experienced water shortage episodes during the past decade. Based on an integrated modeling framework, this study explores how hydro-climatic conditions and water needs could evolve in mountain environments and assesses their potential impacts on water stress by the 2060 horizon. Flows were simulated based on a daily semi-distributed hydrological model. Future changes were derived from Swiss climate scenarios based on two regional climate models. Regarding water needs, the authorities of the canton of Vaud provided a population growth scenario while irrigation and livestock trends followed a business-as-usual scenario. Currently, the canton of Vaud experiences moderate water stress from June to August, except in its Alpine area where no stress is noted. In the 2060 horizon, water needs could exceed 80% of the rivers' available resources in low- to mid-altitude environments in mid-summer. This arises from the combination of drier and warmer climate that leads to longer and more severe low flows, and increasing urban (+ 40%) and irrigation (+ 25%) water needs. Highlighting regional differences supports the development of sustainable development pathways to reduce water tensions. Based on a quantitative assessment, this study also calls for broader impact studies including water quality issues.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Because climate can affect xylem cell anatomy, series of intra-annual cell anatomical features have the potential to retrospectively supply seasonal climatic information. In this study, we explored the ability to extract information about water stress conditions from tracheid features of the Mediterranean conifer Juniperus thurifera L. Tracheidograms of four climatic years from two drought-sensitive sites in Spain were compared to evaluate whether it is possible to link intra-annual cell size patterns to seasonal climatic conditions. Results indicated site-specific anatomical adjustment such as smaller and thicker tracheids at the dryer site but also showed a strong climatic imprint on the intra-annual pattern of tracheid size. Site differences in cell size reflected expected structural adjustments against cavitation failures. Differences between intra-annual patterns, however, indicated a response to seasonal changes in water availability whereby cells formed under drought conditions were smaller and thicker, and vice versa. This relationship was more manifest and stable at the dryer site

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Past studies of water stress in Eucalyptus spp. generally highlighted the role of fewer than five “important” metabolites, whereas recent metabolomic studies on other genera have shown tens of compounds are affected. There are currently no metabolite profiling data for responses of stress-tolerant species to water stress. We used GC–MS metabolite profiling to examine the response of leaf metabolites to a long (2 month) and severe (Ψpredawn < −2 MPa) water stress in two species of the perennial tree genus Eucalyptus (the mesic Eucalyptus pauciflora and the semi-arid Eucalyptus dumosa). Polar metabolites in leaves were analysed by GC–MS and inorganic ions by capillary electrophoresis. Pressure–volume curves and metabolite measurements showed that water stress led to more negative osmotic potential and increased total osmotically active solutes in leaves of both species. Water stress affected around 30–40% of measured metabolites in E. dumosa and 10–15% in E. pauciflora. There were many metabolites that were affected in E. dumosa but not E. pauciflora, and some that had opposite responses in the two species. For example, in E. dumosa there were increases in five acyclic sugar alcohols and four low-abundance carbohydrates that were unaffected by water stress in E. pauciflora. Re-watering increased osmotic potential and decreased total osmotically active solutes in E. pauciflora, whereas in E. dumosa re-watering led to further decreases in osmotic potential and increases in total osmotically active solutes. This experiment has added several extra dimensions to previous targeted analyses of water stress responses in Eucalyptus, and highlights that even species that are closely related (e.g. congeners) may respond differently to water stress and re-watering

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Water stress (WS) slows growth and photosynthesis (An), but most knowledge comes from short-time studies that do not account for longer term acclimation processes that are especially relevant in tree species. Using two Eucalyptus species that contrast in drought tolerance, we induced moderate and severe water deficits by withholding water until stomatal conductance (gsw) decreased to two pre-defined values for 24 d, WS was maintained at the target gsw for 29 d and then plants were re-watered. Additionally, we developed new equations to simulate the effect on mesophyll conductance (gm) of accounting for the resistance to refixation of CO2. The diffusive limitations to CO2, dominated by the stomata, were the most important constraints to An. Full recovery of An was reached after re-watering, characterized by quick recovery of gm and even higher biochemical capacity, in contrast to the slower recovery of gsw. The acclimation to long-term WS led to decreased mesophyll and biochemical limitations, in contrast to studies in which stress was imposed more rapidly. Finally, we provide evidence that higher gm under WS contributes to higher intrinsic water-use efficiency (iWUE) and reduces the leaf oxidative stress, highlighting the importance of gm as a target for breeding/genetic engineering.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In wheat (Triticum aestivum) seedlings subjected to a mild water stress (water potential of −0.3 MPa), the leaf-elongation rate was reduced by one-half and the mitotic activity of mesophyll cells was reduced to 42% of well-watered controls within 1 d. There was also a reduction in the length of the zone of mesophyll cell division to within 4 mm from the base compared with 8 mm in control leaves. However, the period of division continued longer in the stressed than in the control leaves, and the final cell number in the stressed leaves reached 85% of controls. Cyclin-dependent protein kinase enzymes that are required in vivo for DNA replication and mitosis were recovered from the meristematic zone of leaves by affinity for p13suc1. Water stress caused a reduction in H1 histone kinase activity to one-half of the control level, although amounts of the enzyme were unaffected. Reduced activity was correlated with an increased proportion of the 34-kD Cdc2-like kinase (an enzyme sharing with the Cdc2 protein of other eukaryotes the same size, antigenic sites, affinity for p13suc1, and H1 histone kinase catalytic activity) deactivated by tyrosine phosphorylation. Deactivation to 50% occurred within 3 h of stress imposition in cells at the base of the meristematic zone and was therefore too fast to be explained by a reduction in the rate at which cells reached mitosis because of slowing of growth; rather, stress must have acted more immediately on the enzyme. The operation of controls slowing the exit from the G1 and G2 phases is discussed. We suggest that a water-stress signal acts on Cdc2 kinase by increasing phosphorylation of tyrosine, causing a shift to the inhibited form and slowing cell production.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Root cortical and stelar protoplasts were isolated from maize (Zea mays L.) plants that were either well watered or water stressed, and the patch-clamp technique was used to investigate their plasma membrane K+ channel activity. In the root cortex water stress did not significantly affect inward- or outward-rectifying K+ conductances relative to those observed in well-watered plants. In contrast, water stress significantly reduced the magnitude of the outward-rectifying K+ current in the root stele but had little effect on the inward-rectifying K+ current. Pretreating well-watered plants with abscisic acid also significantly affected K+ currents in a way that was consistent with abscisic acid mediating, at least in part, the response of roots to water stress. It is proposed that the K+ channels underlying the K+ currents in the root stelar cells represent pathways that allow K+ exchange between the root symplasm and xylem apoplast. It is suggested that the regulation of K+ channel activity in the root in response to water stress could be part of an important adaptation of the plant to survive drying soils.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe here the cloning and characterization of a cDNA encoding a protein kinase that has high sequence homology to members of the mitogen-activated protein kinase (MAPK) kinase kinase (MAPKKK or MEKK) family; this cDNA is named cATMEKKI (Arabidopsis thaliana MAP kinase or ERK kinase kinase 1). The catalytic domain of the putative ATMEKK1 protein shows approximately 40% identity with the amino acid sequences of the catalytic domains of MAPKKKs (such as Byr2 from Schizosaccharomyces pombe, Ste11 from Saccharomyces cerevisiae, Bck1 from S. cerevisiae, MEKK from mouse, and NPK1 from tobacco). In yeast cells that overexpress ATMEKK1, the protein kinase replaces Ste11 in responding to mating pheromone. In this study, the expression of three protein kinases was examined by Northern blot analyses: ATMEKK1 (structurally related to MAPKKK), ATMPK3 (structurally related to MAPK), and ATPK19 (structurally related to ribosomal S6 kinase). The mRNA levels of these three protein kinases increased markedly and simultaneously in response to touch, cold, and salinity stress. These results suggest that MAP kinase cascades, which are thought to respond to a variety of extracellular signals, are regulated not only at the posttranslational level but also at the transcriptional level in plants and that MAP kinase cascades in plants may function in transducing signals in the presence of environmental stress.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Effects of water stress duration and intensity on gas exchange and leaf water potential were investigated in 7-month-old seedlings of a humid coastal provenance (Gympie) and a dry inland (Hungry Hills) provenance of E. cloeziana F. Muell. and in a dry inland (Chinchilla) provenance of E. argophloia Blakely supplied with 100% (T-100), 70% (T-70), 50% (T-50) of their water requirements, or were watered only after they were wilted at dawn (T-0). Seedlings of E. argophloia had the highest midday net photosynthetic rate (A), stomata] conductance (g(s)), stomatal density and predawn leaf water potential (Psi(pd)) in all treatments. The E. cloeziana provenances did not differ in these attributes. The T-70 and T-50 treatments caused reductions in A of 30% in E. argophloia, and 55% in the E. cloeziana provenances. Under the T-0 treatment, E. argophloia maintained higher rates of gas exchange at all levels of water stress than E. cloeziana provenances. The estimates of Psi(pd) and midday water potential (Psi(md)) at which plants remained wilted overnight were respectively: -2.7 and -4.1 MPa for E. cloeziana (humid), -2.8 and -4.0 MPa for E. cloeziana (dry) and, -3.7 and -4.9 MPa for E. argophloia. Following stress relief, both A and g(s) recovered more quickly in E. argophloia and in the dry provenance of E. cloeziana than in the humid provenance. We conclude that E. argophloia is more drought tolerant and has a potential for cultivation in the humid and semi humid climates, whilst E. cloeziana has greater potential in the humid subtropical climates.