979 resultados para Sensor fault diagnosis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a practical recursive fault detection and diagnosis (FDD) scheme for online identification of actuator faults for unmanned aerial systems (UASs) based on the unscented Kalman filtering (UKF) method. The proposed FDD algorithm aims to monitor health status of actuators and provide indication of actuator faults with reliability, offering necessary information for the design of fault-tolerant flight control systems to compensate for side-effects and improve fail-safe capability when actuator faults occur. The fault detection is conducted by designing separate UKFs to detect aileron and elevator faults using a nonlinear six degree-of-freedom (DOF) UAS model. The fault diagnosis is achieved by isolating true faults by using the Bayesian Classifier (BC) method together with a decision criterion to avoid false alarms. High-fidelity simulations with and without measurement noise are conducted with practical constraints considered for typical actuator fault scenarios, and the proposed FDD exhibits consistent effectiveness in identifying occurrence of actuator faults, verifying its suitability for integration into the design of fault-tolerant flight control systems for emergency landing of UASs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new scheme for robust estimation of the partial state of linear time-invariant multivariable systems is presented, and it is shown how this may be used for the detection of sensor faults in such systems. We consider an observer to be robust if it generates a faithful estimate of the plant state in the face of modelling uncertainty or plant perturbations. Using the Stable Factorization approach we formulate the problem of optimal robust observer design by minimizing an appropriate norm on the estimation error. A logical candidate is the 2-norm, corresponding to an H�¿ optimization problem, for which solutions are readily available. In the special case of a stable plant, the optimal fault diagnosis scheme reduces to an internal model control architecture.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This brief examines the application of nonlinear statistical process control to the detection and diagnosis of faults in automotive engines. In this statistical framework, the computed score variables may have a complicated nonparametric distri- bution function, which hampers statistical inference, notably for fault detection and diagnosis. This brief shows that introducing the statistical local approach into nonlinear statistical process control produces statistics that follow a normal distribution, thereby enabling a simple statistical inference for fault detection. Further, for fault diagnosis, this brief introduces a compensation scheme that approximates the fault condition signature. Experimental results from a Volkswagen 1.9-L turbo-charged diesel engine are included.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electric vehicles (EVs) and hybrid electric vehicles (HEVs) can reduce greenhouse gas emissions while switched reluctance motor (SRM) is one of the promising motor for such applications. This paper presents a novel SRM fault-diagnosis and fault-tolerance operation solution. Based on the traditional asymmetric half-bridge topology for the SRM driving, the central tapped winding of the SRM in modular half-bridge configuration are introduced to provide fault-diagnosis and fault-tolerance functions, which are set idle in normal conditions. The fault diagnosis can be achieved by detecting the characteristic of the excitation and demagnetization currents. An SRM fault-tolerance operation strategy is also realized by the proposed topology, which compensates for the missing phase torque under the open-circuit fault, and reduces the unbalanced phase current under the short-circuit fault due to the uncontrolled faulty phase. Furthermore, the current sensor placement strategy is also discussed to give two placement methods for low cost or modular structure. Simulation results in MATLAB/Simulink and experiments on a 750-W SRM validate the effectiveness of the proposed strategy, which may have significant implications and improve the reliability of EVs/HEVs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El test de circuits és una fase del procés de producció que cada vegada pren més importància quan es desenvolupa un nou producte. Les tècniques de test i diagnosi per a circuits digitals han estat desenvolupades i automatitzades amb èxit, mentre que aquest no és encara el cas dels circuits analògics. D'entre tots els mètodes proposats per diagnosticar circuits analògics els més utilitzats són els diccionaris de falles. En aquesta tesi se'n descriuen alguns, tot analitzant-ne els seus avantatges i inconvenients. Durant aquests últims anys, les tècniques d'Intel·ligència Artificial han esdevingut un dels camps de recerca més importants per a la diagnosi de falles. Aquesta tesi desenvolupa dues d'aquestes tècniques per tal de cobrir algunes de les mancances que presenten els diccionaris de falles. La primera proposta es basa en construir un sistema fuzzy com a eina per identificar. Els resultats obtinguts son força bons, ja que s'aconsegueix localitzar la falla en un elevat tant percent dels casos. Per altra banda, el percentatge d'encerts no és prou bo quan a més a més s'intenta esbrinar la desviació. Com que els diccionaris de falles es poden veure com una aproximació simplificada al Raonament Basat en Casos (CBR), la segona proposta fa una extensió dels diccionaris de falles cap a un sistema CBR. El propòsit no és donar una solució general del problema sinó contribuir amb una nova metodologia. Aquesta consisteix en millorar la diagnosis dels diccionaris de falles mitjançant l'addició i l'adaptació dels nous casos per tal d'esdevenir un sistema de Raonament Basat en Casos. Es descriu l'estructura de la base de casos així com les tasques d'extracció, de reutilització, de revisió i de retenció, fent èmfasi al procés d'aprenentatge. En el transcurs del text s'utilitzen diversos circuits per mostrar exemples dels mètodes de test descrits, però en particular el filtre biquadràtic és l'utilitzat per provar les metodologies plantejades, ja que és un dels benchmarks proposats en el context dels circuits analògics. Les falles considerades son paramètriques, permanents, independents i simples, encara que la metodologia pot ser fàcilment extrapolable per a la diagnosi de falles múltiples i catastròfiques. El mètode es centra en el test dels components passius, encara que també es podria extendre per a falles en els actius.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Artificial neural networks have a good potential to be employed for fault diagnosis and condition monitoring problems in complex processes. In this paper, the applicability of the fuzzy ARTMAP (FAM) neural network as an intelligent learning system for fault detection and diagnosis in a power generation plant is described. The process under scrutiny is the circulating water (CW) system, with specific attention to the conditions of heat transfer and tube blockage in the CW system. A series of experiments has been conducted systematically to investigate the effectiveness of FAM in fault detection and diagnosis tasks. In addition, a set of domain rules has been extracted from the trained FAM network so that its predictions can be explained and justified. The outcomes demonstrate the benefits of employing FAM as an intelligent fault detection and diagnosis tool with an explanatory capability for monitoring and diagnosing complex processes in power generation plants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Growth of complexity and functional importance of integrated navigation systems (INS) leads to high losses at the equipment refusals. The paper is devoted to the INS diagnosis system development, allowing identifying the cause of malfunction. The proposed solutions permit taking into account any changes in sensors dynamic and accuracy characteristics by means of the appropriate error models coefficients. Under actual conditions of INS operation, the determination of current values of the sensor models and estimation filter parameters rely on identification procedures. The results of full-scale experiments are given, which corroborate the expediency of INS error models parametric identification in bench test process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electric vehicles (EVs) and hybrid electric vehicles (HEVs) can reduce greenhouse gas emissions while switched reluctance motor (SRM) is one of the promising motor for such applications. This paper presents a novel SRM fault-diagnosis and fault-tolerance operation solution. Based on the traditional asymmetric half-bridge topology for the SRM driving, the central tapped winding of the SRM in modular half-bridge configuration are introduced to provide fault-diagnosis and fault-tolerance functions, which are set idle in normal conditions. The fault diagnosis can be achieved by detecting the characteristic of the excitation and demagnetization currents. An SRM fault-tolerance operation strategy is also realized by the proposed topology, which compensates for the missing phase torque under the open-circuit fault, and reduces the unbalanced phase current under the short-circuit fault due to the uncontrolled faulty phase. Furthermore, the current sensor placement strategy is also discussed to give two placement methods for low cost or modular structure. Simulation results in MATLAB/Simulink and experiments on a 750-W SRM validate the effectiveness of the proposed strategy, which may have significant implications and improve the reliability of EVs/HEVs.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In condition-based maintenance (CBM), effective diagnostics and prognostics are essential tools for maintenance engineers to identify imminent fault and to predict the remaining useful life before the components finally fail. This enables remedial actions to be taken in advance and reschedules production if necessary. This paper presents a technique for accurate assessment of the remnant life of machines based on historical failure knowledge embedded in the closed loop diagnostic and prognostic system. The technique uses the Support Vector Machine (SVM) classifier for both fault diagnosis and evaluation of health stages of machine degradation. To validate the feasibility of the proposed model, the five different level data of typical four faults from High Pressure Liquefied Natural Gas (HP-LNG) pumps were used for multi-class fault diagnosis. In addition, two sets of impeller-rub data were analysed and employed to predict the remnant life of pump based on estimation of health state. The results obtained were very encouraging and showed that the proposed prognosis system has the potential to be used as an estimation tool for machine remnant life prediction in real life industrial applications.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The topic of fault detection and diagnostics (FDD) is studied from the perspective of proactive testing. Unlike most research focus in the diagnosis area in which system outputs are analyzed for diagnosis purposes, in this paper the focus is on the other side of the problem: manipulating system inputs for better diagnosis reasoning. In other words, the question of how diagnostic mechanisms can direct system inputs for better diagnosis analysis is addressed here. It is shown how the problem can be formulated as decision making problem coupled with a Bayesian Network based diagnostic mechanism. The developed mechanism is applied to the problem of supervised testing in HVAC systems.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Failing injectors are one of the most common faults in diesel engines. The severity of these faults could have serious effects on diesel engine operations such as engine misfire, knocking, insufficient power output or even cause a complete engine breakdown. It is thus essential to prevent such faults from occurring by monitoring the condition of these injectors. In this paper, the authors present the results of an experimental investigation on identifying the signal characteristics of a simulated incipient injector fault in a diesel engine using both in-cylinder pressure and acoustic emission (AE) techniques. A time waveform event driven synchronous averaging technique was used to minimize or eliminate the effect of engine speed variation and amplitude fluctuation. It was found that AE is an effective method to detect the simulated injector fault in both time (crank angle) and frequency (order) domains. It was also shown that the time domain in-cylinder pressure signal is a poor indicator for condition monitoring and diagnosis of the simulated injector fault due to the small effect of the simulated fault on the engine combustion process. Nevertheless, good correlations between the simulated injector fault and the lower order components of the enveloped in-cylinder pressure spectrum were found at various engine loading conditions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In recent years, some models have been proposed for the fault section estimation and state identification of unobserved protective relays (FSE-SIUPR) under the condition of incomplete state information of protective relays. In these models, the temporal alarm information from a faulted power system is not well explored although it is very helpful in compensating the incomplete state information of protective relays, quickly achieving definite fault diagnosis results and evaluating the operating status of protective relays and circuit breakers in complicated fault scenarios. In order to solve this problem, an integrated optimization mathematical model for the FSE-SIUPR, which takes full advantage of the temporal characteristics of alarm messages, is developed in the framework of the well-established temporal constraint network. With this model, the fault evolution procedure can be explained and some states of unobserved protective relays identified. The model is then solved by means of the Tabu search (TS) and finally verified by test results of fault scenarios in a practical power system.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Low speed rotating machines which are the most critical components in drive train of wind turbines are often menaced by several technical and environmental defects. These factors contribute to mount the economic requirement for Health Monitoring and Condition Monitoring of the systems. When a defect is happened in such system result in reduced energy loss rates from related process and due to it Condition Monitoring techniques that detecting energy loss are very difficult if not possible to use. However, in the case of Acoustic Emission (AE) technique this issue is partly overcome and is well suited for detecting very small energy release rates. Acoustic Emission (AE) as a technique is more than 50 years old and in this new technology the sounds associated with the failure of materials were detected. Acoustic wave is a non-stationary signal which can discover elastic stress waves in a failure component, capable of online monitoring, and is very sensitive to the fault diagnosis. In this paper the history and background of discovering and developing AE is discussed, different ages of developing AE which include Age of Enlightenment (1950-1967), Golden Age of AE (1967-1980), Period of Transition (1980-Present). In the next section the application of AE condition monitoring in machinery process and various systems that applied AE technique in their health monitoring is discussed. In the end an experimental result is proposed by QUT test rig which an outer race bearing fault was simulated to depict the sensitivity of AE for detecting incipient faults in low speed high frequency machine.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Bearing faults are the most common cause of wind turbine failures. Unavailability and maintenance cost of wind turbines are becoming critically important, with their fast growing in electric networks. Early fault detection can reduce outage time and costs. This paper proposes Anomaly Detection (AD) machine learning algorithms for fault diagnosis of wind turbine bearings. The application of this method on a real data set was conducted and is presented in this paper. For validation and comparison purposes, a set of baseline results are produced using the popular one-class SVM methods to examine the ability of the proposed technique in detecting incipient faults.