210 resultados para Nucleosides


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of new carbocyclic C-nucleosides with a cis-4′-(hydroxymethyl)cyclopent-2′-enyl sugar moiety and unnatural pyrimidine bases (2–6) were synthesized in racemic form in two steps starting from the easily accessible cyclic carbonate 1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The human choriocarcinoma cell line JEG-3 is heterozygous at the adenosine deaminase (ADA) gene locus. Both allelic genes are under strong but incomplete repression causing a very low level expression of the gene locus. Because cytotoxic adenosine analogues such as 9-(beta)-D arabinofuranosyladenine (ara-A) and 9-(beta)-D xylofuranosyladenine (xyl-A) can be specifically detoxified by the action of ADA, these analogues were used to select for JEG-3 derived cells which had increased ADA expression. When JEG-3 cells were subjected to a multi-step, successively increasing dosage of either ara-A or xyl-A, resistant cells with increased ADA expression were generated. This increased ADA expression in the resistant cells was unstable, so that when the selective pressure was removed, cellular ADA expression would decrease. Subclone analysis of xyl-A resistant cells revealed that compared to parental JEG-3 cells, individual resistant cells had either elevated ADA levels or decreased adenosine kinase (ADK) levels or both. This altered ADA and ADK expression in the resistant cells were found to be independent events. Because of high endogenous tissue conversion factor (TCF) expression in the JEG-3 cells, the allelic nature of the increased ADA expression in most of the resistant cells could not be determined. However, several resistant subcloned cells were found to have lost TCF expression. These TCF('-) cells expressed only the ADA*2 allelic gene product. Cell fusion experiments demonstrated that the ADA*1 allelic gene was intact and functional in the A3-1A7 cell line. Chromosomal analysis of the A3-1A7 cells showed that they had no double-minutes or homogeneously staining chromosomal regions, although a pair of new chromosomes were found in these cells. Segregation analysis of the hybrid cells indicated that an ADA*2 allelic gene was probably located on this new chromosome. The analysis of the A3-1A7 cell line suggested that the expression of only ADA 2 in these cells was the result of possibly a cis-deregulation of the ADA gene locus or more probably an amplification of the ADA*2 allelic gene. Two effective positive selection systems for ADA('+) cells were also developed and tested. These selection systems should eventually lead to the isolation of the ADA gene.^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The absorption and metabolism of dietary nucleic acids have received less attention than those of other organic nutrients, largely because of methodological difficulties. We supplemented the rations of poultry and mice with the edible alga Spirulina platensis, which had been uniformly labeled with 13C by hydroponic culture in 13CO2. The rations were ingested by a hen for 4 wk and by four mice for 6 days; two mice were fed a normal diet and two were fed a nucleic acid-deficient diet. The animals were killed and nucleosides were isolated from hepatic RNA. The isotopic enrichment of all mass isotopomers of the nucleosides was analyzed by selected ion monitoring of the negative chemical ionization mass spectrum and the labeling pattern was deconvoluted by reference to the enrichment pattern of the tracer material. We found a distinct difference in the 13C enrichment pattern between pyrimidine and purine nucleosides; the isotopic enrichment of uniformly labeled [M + 9] isotopomers of pyrimidines exceeded that of purines [M + 10] by > 2 orders of magnitude in the avian nucleic acids and by 7- and 14-fold in the murine nucleic acids. The purines were more enriched in lower mass isotopomers, those less than [M + 3], than the pyrimidines. Our results suggest that large quantities of dietary pyrimidine nucleosides and almost no dietary purine nucleosides are incorporated into hepatic nucleic acids without hydrolytic removal of the ribose moiety. In addition, our results support a potential nutritional role for nucleosides and suggest that pyrimidines are conditionally essential organic nutrients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ability of DNA polymerases (pols) to catalyze the template-directed synthesis of duplex oligonucleotides containing a nonstandard Watson-Crick base pair between a nucleotide bearing a 5-(2,4-diaminopyrimidine) heterocycle (d kappa) and a nucleotide bearing either deoxyxanthosine (dX) or N1-methyloxoformycin B (pi) has been investigated. The kappa-X and kappa-pi base pairs are jointed by a hydrogen bonding pattern different from and exclusive of those joining the AT and GC base pairs. Reverse transcriptase from human immunodeficiency virus type 1 (HIV-1) incorporates dXTP into an oligonucleotide opposite d kappa in a template with good fidelity. With lower efficiency and fidelity, HIV-1 reverse transcriptase also incorporates d kappa TP opposite dX in the template. With d pi in the template, no incorporation of d kappa TP was observed with HIV reverse transcriptase. The Klenow fragment of DNA pol I from Escherichia coli does not incorporate d kappa TP opposite dX in a template but does incorporate dXTP opposite d kappa. Bovine DNA pols alpha, beta, and epsilon accept neither dXTP opposite d kappa nor d kappa TP opposite d pi. DNA pols alpha and epsilon (but not beta) incorporate d kappa TP opposite dX in a template but discontinue elongation after incorporating a single additional base. These results are discussed in light of the crystal structure for pol beta and general considerations of how polymerases must interact with an incoming base pair to faithfully copy genetic information.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Development of accurate and sensitive analytical methods to measure the level of biomarkers, such as 8-oxo-guanine or its corresponding nucleoside, 8-oxo-2’-deoxyguanosine, has become imperative in the study of DNA oxidative damage in vivo. Of the most promising techniques, HPLC-MS/MS, has many attractive advantages. Like any method that employs the MS technique, its accuracy depends on the use of multiply, isotopically-labelled internal standards. This project is aimed at making available such internal standards. The first task was to synthesise the multiply, isotopically-labelled bases (M+4) guanine and (M+4) 8-oxo-guanine. Synthetic routes for both (M+4) guanine and (M+4) 8-oxo-guanine were designed and validated using the unlabelled compounds. The reaction conditions were also optimized during the “dry runs”. The amination of the 4-hydroxy-2,6-dichloropyrimidine, appeared to be very sensitive to the purity of the commercial [15]N benzylamine reagent. Having failed, after several attempts, to obtain the pure reagent from commercial suppliers, [15]N benzylamine was successfully synthesised in our laboratory and used in the first synthesis of (M+4) guanine. Although (M+4) bases can be, and indeed have been used as internal standards in the quantitative analysis of oxidative damage, they can not account for the errors that may occur during the early sample preparation stages. Therefore, internal standards in the form of nucleosides and DNA oligomers are more desirable. After evaluating a number of methods, an enzymatic transglycolization technique was adopted for the transfer of the labelled bases to give their corresponding nucleosides. Both (M+4) 2-deoxyguanosine and (M+4) 8-oxo-2’-deoxyguanosine can be purified on micro scale by HPLC. The challenge came from the purification of larger scale (>50 mg) synthesis of nucleosides. A gel filtration method was successfully developed, which resulted in excellent separation of (M+4) 2’-deoxyguanosine from the incubation mixture. The (M+4) 2’-deoxyguanosine was then fully protected in three steps and successfully incorporated, by solid supported synthesis, into a DNA oligomer containing 18 residues. Thus, synthesis of 8-oxo-deoxyguanosine on a bigger scale for its future incorporation into DNA oligomers is now a possibility resulting from this thesis work. We believe that these internal standards can be used to develop procedures that can make the measurement of oxidative DNA damage more accurate and sensitive.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reaction conditions facilitating the site-selective direct aryl functionalisation at the C-8 position of adenine nucleosides have been identified. Many different aromatic components may be effectively cross-coupled to provide a diverse array of arylated adenine nucleoside products without the need for ribose or adenine protecting groups. The optimal palladium catalyst loading lies between 0.5 and 5 mol %. Addition of excess mercury to the reaction had a negligible affect on catalysis, suggesting the involvement of a homogeneous catalytic species. A study by transmission electron microscopy (TEM) shows that metal containing nanoparticles, ca. 3 nm with good uniformity, are formed during the latter stages of the reaction. Stabilised PVP palladium colloids (PVP=N-polyvinylpyrrolidone) are catalytically active in the direct arylation process, releasing homogenous palladium into solution. The effect of various substituted 2-pyridine ligand additives has been investigated. A mechanism for the site-selective arylation of adenosine is proposed. © 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The antiviral or anticancer activities of C-5 modified pyrimidine nucleoside analogues validate the need for the development of their syntheses. In the first half of this dissertation, I explore the Pd-catalyzed cross-coupling reaction of allylphenylgermanes with aryl halides in the presence of SbF 5/TBAF to give various biaryls by transferring multiple phenyl groups, which has also been applied to the 5-halo pyrimidine nucleosides for the synthesis of 5-aryl derivatives. To avoid the use of organometallic reagents, I developed Pd-catalyzed direct arylation of 5-halo pyrimidine nucleosides. It was discovered that 5-aryl pyrimidine nucleosides could be synthesized by Pd-catalyzed direct arylation of N3-free 5-halo uracil and uracil nucleosides with simple arenes or heteroaromatics in the presence of TBAF within 1 h. Both N3-protected and N3-free uracil and uracil nucleosides could undergo base-promoted Pd-catalyzed direct arylation, but only with electron rich heteroaromatics. ^ In the second half of this dissertation, 5-acetylenic uracil and uracil nucleosides have been employed to investigate the hydrogermylation, hydrosulfonylation as well as hydroazidation for the synthesis of various functionalized 5-vinyl pyrimidine nucleosides. Hydrogermylation of 5-alkynyl uracil analogues with trialkylgermane or tris(trimethylsilyl)germane hydride gave the corresponding vinyl trialkylgermane, or tris(trimethylsilyl)germane uracil derivatives. During the hydrogermylation with triphenylgermane, besides the vinyl triphenylgermane uracil derivatives, 5-[2-(triphenylgermyl)acetyl]uracil was also isolated and characterized and the origin of the acetyl oxygen was clarified. Tris(trimethylsilyl)germane uracil derivatives were coupled to aryl halides but with decent yield. Iron-mediated regio- and stereoselective hydrosulfonylation of the 5-ethynyl pyrimidine analogues with sulfonyl chloride or sulfonyl hydrazine to give 5-(1-halo-2-tosyl)vinyluracil nucleoside derivatives has been developed. Nucleophilic substitution of the 5-(β-halovinyl)sulfonyl nucleosides with various nucleophiles have been performed to give highly functionalized 5-vinyl pyrimidine nucleosides via the addition-elimination mechanism. The 5-(β-keto)sulfonyluracil derivative has also been synthesized via the aerobic difunctionalization of 5-ethynyluracil analogue with sulfinic acid in the presence of catalytic amount of pyridine. Silver catalyzed hydroazidation of protected 2'-deoxy-5-ethynyluridine with TMSN3 in the presence of catalytic amount of water to give 5-(α-azidovinyl)uracil nucleoside derivatives was developed. Strain promoted Click reaction of the 5-(α-azidovinyl)uracil with cyclooctyne provide the corresponding fully conjugated triazole product.^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The antiviral or anticancer activities of C-5 modified pyrimidine nucleoside analogues validate the need for the development of their syntheses. In the first half of this dissertation, I explore the Pd-catalyzed cross-coupling reaction of allylphenylgermanes with aryl halides in the presence of SbF5/TBAF to give various biaryls by transferring multiple phenyl groups, which has also been applied to the 5-halo pyrimidine nucleosides for the synthesis of 5-aryl derivatives. To avoid the use of organometallic reagents, I developed Pd-catalyzed direct arylation of 5-halo pyrimidine nucleosides. It was discovered that 5-aryl pyrimidine nucleosides could be synthesized by Pd-catalyzed direct arylation of N3-free 5-halo uracil and uracil nucleosides with simple arenes or heteroaromatics in the presence of TBAF within 1 h. Both N3-protected and N3-free uracil and uracil nucleosides could undergo base-promoted Pd-catalyzed direct arylation, but only with electron rich heteroaromatics. In the second half of this dissertation, 5-acetylenic uracil and uracil nucleosides have been employed to investigate the hydrogermylation, hydrosulfonylation as well as hydroazidation for the synthesis of various functionalized 5-vinyl pyrimidine nucleosides. Hydrogermylation of 5-alkynyl uracil analogues with trialkylgermane or tris(trimethylsilyl)germane hydride gave the corresponding vinyl trialkylgermane, or tris(trimethylsilyl)germane uracil derivatives. During the hydrogermylation with triphenylgermane, besides the vinyl triphenylgermane uracil derivatives, 5-[2-(triphenylgermyl)acetyl]uracil was also isolated and characterized and the origin of the acetyl oxygen was clarified. Tris(trimethylsilyl)germane uracil derivatives were coupled to aryl halides but with decent yield. Iron-mediated regio- and stereoselective hydrosulfonylation of the 5-ethynyl pyrimidine analogues with sulfonyl chloride or sulfonyl hydrazine to give 5-(1-halo-2-tosyl)vinyluracil nucleoside derivatives has been developed. Nucleophilic substitution of the 5-(β-halovinyl)sulfonyl nucleosides with various nucleophiles have been performed to give highly functionalized 5-vinyl pyrimidine nucleosides via the addition-elimination mechanism. The 5-(β-keto)sulfonyluracil derivative has also been synthesized via the aerobic difunctionalization of 5-ethynyluracil analogue with sulfinic acid in the presence of catalytic amount of pyridine. Silver catalyzed hydroazidation of protected 2'-deoxy-5-ethynyluridine with TMSN3 in the presence of catalytic amount of water to give 5-(α-azidovinyl)uracil nucleoside derivatives was developed. Strain promoted Click reaction of the 5-(α-azidovinyl)uracil with cyclooctyne provide the corresponding fully conjugated triazole product.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Xanthine oxidase (XO) is a complex molybdeno-flavoprotein occurring with high activity in the milk fat globule membrane (MFGM) in all mammalian milk and is involved in the final stage of degradation of purine nucleotides. It catalyzes the sequential oxidation of hypoxanthine to xanthine and uric acid, accompanied by production of hydrogen peroxide and superoxide anion. Human saliva has been extensively described for its composition of proteins, electrolytes, cortisol, melatonin and some metabolites such as amino acids, but little is known about nucleotide metabolites. Method: Saliva was collected with swabs from babies; at full-term 1-4 days, 6-weeks, 6-months and 12-months. Unstimulated fasting (morning) saliva samples were collected directly from 77 adults. Breast milk was collected from 24 new mothers. Saliva was extracted from swabs and ultra-filtered. Nucleotide metabolites were analyzed by RP-HPLC with UV-photodiode array and ESI-MS/MS. XO activity was measured as peroxide production from hypoxanthine. Bacterial inhibition over time was assessed using CFU/mL or OD. Results: Median concentrations (μmol/L) of salivary nucleobases and nucleosides for neonates/6-weeks/6-months/12-months/adult respectively were: uracil 5.3/0.8/1.4/0.7/0.8, hypoxanthine 27/7.0/1.1/0.8/2.0, xanthine 19/7.0/2.0/2.0/2.0, adenosine 12/7.0/0.9/0.8/0.1, inosine 11/5.0/0.3/0.4/0.2, guanosine 7.0/6.0/0.5/0.4/0.1, uridine 12/0.8/0.3/0.9/0.4. Deoxynucleosides and dihydropyrimidines concentrations were essentially negligible. XO activity (Vmax:mean ± SD) in breast milk was 8.9 ± 6.2 μmol/min/L and endogenous peroxide was 27 ± 12 μmol/L; mixing breast milk with neonate saliva generated ~40 μmol/L peroxide,which inhibited Staphylococcus aureus. Conclusions: Salivary metabolites, particularly xanthine/hypoxanthine, are high in neonates, transitioning to low adult levels between 6-weeks to 6-months (p < 0.001). Peroxide occurs in breast milk and is boosted during suckling as an antibacterial system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Saliva contains a number of biochemical components which may be useful for diagnosis/monitoring of metabolic disorders, and as markers of cancer or heart disease. Saliva collection is attractive as a non-invasive sampling method for infants and elderly patients. We present a method suitable for saliva collection from neonates. We have applied this technique for the determination of salivary nucleotide metabolites. Saliva was collected from 10 healthy neonates using washed cotton swabs, and directly from 10 adults. Two methods for saliva extraction from oral swabs were evaluated. The analytes were then separated using high performance liquid chromatography (HPLC) with tandem mass spectrometry (MS/MS). The limits of detection for 14 purine/pyrimidine metabolites were variable, ranging from 0.01 to 1.0 mu M. Recovery of hydrophobic purine/pyrimidine metabolites from cotton tips was consistently high using water/acetonitrile extraction (92.7-111%) compared with water extraction alone. The concentrations of these metabolites were significantly higher in neonatal saliva than in adults. Preliminary ranges for nucleotide metabolites in neonatal and adult saliva are reported. Hypoxanthine and xanthine were grossly raised in neonates (49.3 +/- 25.4; 30.9 +/- 19.5 mu M respectively) compared to adults (4.3 +/- 3.3; 4.6 +/- 4.5 mu M); nucleosides were also markedly raised in neonates. This study focuses on three essential details: contamination of oral swabs during manufacturing and how to overcome this; weighing swabs to accurately measure small saliva volumes; and methods for extracting saliva metabolites of interest from cotton swabs. A method is described for determining nucleotide metabolites using HPLC with photo-diode array or MS/MS. The advantages of utilising saliva are highlighted. Nucleotide metabolites were not simply in equilibrium with plasma, but may be actively secreted into saliva, and this process is more active in neonates than adults. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Computer graphic analyses on a broad spectrum of adenosine receptor ligands has shown that both the A1 and A2 adenosine receptors have three binding sites. The spatial relationship of these three binding sites has been defined. Adenosine orientation at A1 and A2 is different.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ribosomal RNA (rRNA) contains a number of modified nucleosides in functionally important regions including the intersubunit bridge regions. As the activity of ribosome recycling factor (RRF) in separating the large and the small subunits of the ribosome involves disruption of intersubunit bridges, we investigated the impact of rRNA methylations on ribosome recycling. We show that deficiency of rRNA methylations, especially at positions 1518 and 1519 of 16S rRNA near the interface with the 50S subunit and in the vicinity of the IF3 binding site, adversely affects the efficiency of RRF-mediated ribosome recycling. In addition, we show that a compromise in the RRF activity affords increased initiation with a mutant tRNA(fMet) wherein the three consecutive G-C base pairs ((29)GGG(31):39CCC41), a highly conserved feature of the initiator tRNAs, were mutated to those found in the elongator tRNA(Met) ((29)UCA(31):(39)psi GA(41)). This observation has allowed us to uncover a new role of RRF as a factor that contributes to fidelity of initiator tRNA selection on the ribosome. We discuss these and earlier findings to propose that RRF plays a crucial role during all the steps of protein synthesis.