998 resultados para Nuclear fusion


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A new method for determining the temporal evolution of plasma rotation is reported in this work. The method is based upon the detection of two different portions of the spectral profile of a plasma impurity line, using a monochromator with two photomultipliers installed at the exit slits. The plasma rotation velocity is determined by the ratio of the two detected signals. The measured toroidal rotation velocities of C III (4647.4 angstrom) and C VI (5290.6 angstrom), at different radial positions in TCABR discharges, show good agreement, within experimental uncertainty, with previous results (Severo et al 2003 Nucl. Fusion 43 1047). In particular, they confirm that the plasma core rotates in the direction opposite to the plasma current, while near the plasma edge (r/a > 0.9) the rotation is in the same direction. This technique was also used to investigate the dependence of toroidal rotation on the poloidal position of gas puffing. The results show that there is no dependence for the plasma core, while for plasma edge (r/a > 0.9) some dependence is observed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents an overview of the results obtained during the Joint Experiments organized in the framework of the IAEA Coordinated Research Project on `Joint Research Using Small Tokamaks` that have been carried out on the tokamaks CASTOR at IPP Prague, Czech Republic (2005), T-10 at RRC `Kurchatov Institute`, Moscow, Russia (2006), and the most recent one at ISTTOK at IST, Lisbon, Portugal, in 2007. Experimental programmes were aimed at diagnosing and characterizing the core and the edge plasma turbulence in a tokamak in order to investigate correlations between the occurrence of transport barriers, improved confinement, electric fields and electrostatic turbulence using advanced diagnostics with high spatial and temporal resolution. On CASTOR and ISTTOK, electric fields were generated by biasing an electrode inserted into the edge plasma and an improvement of the global particle confinement induced by the electrode positive biasing has been observed. Geodesic acoustic modes were studied using heavy ion beam diagnostics on T-10 and ISTTOK and correlation reflectometry on T-10. ISTTOK is equipped with a gallium jet injector and the technical feasibility of gallium jets interacting with plasmas has been investigated in pulsed and ac operation. The first Joint Experiments have clearly demonstrated that small tokamaks are suitable for broad international cooperation to conduct dedicated joint research programmes. Other activities within the IAEA Coordinated Research Project on Joint Research Using Small Tokamaks are also overviewed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

For tokamak models using simplified geometries and reversed shear plasma profiles, we have numerically investigated how the onset of Lagrangian chaos at the plasma edge may affect the plasma confinement in two distinct but closely related problems. Firstly, we have considered the motion of particles in drift waves in the presence of an equilibrium radial electric field with shear. We have shown that the radial particle transport caused by this motion is selective in phase space, being determined by the resonant drift waves and depending on the parameters of both the resonant waves and the electric field profile. Moreover, we have shown that an additional transport barrier may be created at the plasma edge by increasing the electric field. In the second place, we have studied escape patterns and magnetic footprints of chaotic magnetic field lines in the region near a tokamak wall, when there are resonant modes due to the action of an ergodic magnetic limiter. A non-monotonic safety factor profile has been used in the analysis of field line topology in a region of negative magnetic shear. We have observed that, if internal modes are perturbed, the distributions of field line connection lengths and magnetic footprints exhibit spatially localized escape channels. For typical physical parameters of a fusion plasma, the two Lagrangian chaotic processes considered in this work can be effective in usual conditions so as to influence plasma confinement. The reversed shear effects discussed in this work may also contribute to evaluate the transport barrier relevance in advanced confinement scenarios in future tokamak experiments.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The variation of the elongation of axisymmetric plasma columns in vertical equilibrium magnetic fields is investigated as a function of the aspect ratio using the Solov'ev equilibrium model and the principle of virtual casing.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Alfven eigenmodes (AEs) were studied in neutral beam injection (NBI) heated plasmas in the TJ-II stellarator using a heavy ion beam probe (HIBP) in the core, and by Langmuir (LP) and Mirnov probes (MP) at the edge. AEs were detected over the whole plasma radius by the HIBP with a spatial resolution of about 1 cm. AE-induced oscillations were detected in the plasma density n(e), electric potential phi and poloidal magnetic field B-pol with frequencies 50 kHz < f(AE) < 300 kHz. The LP, MP and HIBP data showed a high level of coherency for specific branches of AEs. Poloidal mode wave-vectors k(theta), mode numbers m (m < 8) and propagation velocities V-theta similar to 30 km s(-1) were detected for various branches of AEs, having different radial locations. When the density rose due to NBI fuelling, the AE frequency decreased as predicted by the Alfven law f(AE) similar to n(e)(-1/2). During the AE frequency decay the following new AE features were observed: (i) the poloidal wave-vector k(theta) and mode number m remained constant, (ii) the cross-phases between the oscillations in B-pol, n(e) and electric potential remained constant, having an individual value for each AE branch, (iii) V-theta decreased proportional to the AE frequency. The interaction of the AEs with the bulk (thermal) plasma resulted in clearly pronounced quasi-coherent peaks in the electrostatic turbulent particle flux spectra. Various AE branches exhibited different contributions to the particle flux: outward, inward and also zero, depending on the phase relations between the oscillations in E-pol and n(e), which are specific for each branch. A comparison with MHD mode modelling indicated that some of the more prominent frequency branches can be identified as radially extended helical AEs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Long-distance correlations (LDCs) of plasma potential fluctuations in the plasma edge have been investigated in the TCABR tokamak in the regime of edge biasing H-mode using an array of multi-pin Langmuir probes. This activity was carried out as part of the scientific programme of the 4th IAEA Joint Experiment (2009). The experimental data confirm the effect of amplification of LDCs in potential fluctuations during biasing recently observed in stellarators and tokamaks. For long toroidal distances between probes, the cross-spectrum is concentrated at low frequencies f < 60 kHz with peaks at f < 5 kHz, f = 13-15 kHz and f similar to 40 kHz and low wave numbers with a maximum at k = 0. The effects of MHD activity on the LDCs in potential fluctuation are investigated.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The adsorption interactions of thallium and its compounds with gold and quartz surfaces were investigated. Carrier-free amounts of thallium were produced in nuclear fusion reactions of alpha particles with thick gold targets. The method chosen for the studies was gas thermochromatography and varying the redox potential of the carrier gases. It was observed that thallium is extremely sensitive to trace amounts of oxygen and water, and can even be oxidized by the hydroxyl groups located on the quartz surface. The experiments on a quartz surface with O2, He, H2 gas in addition with water revealed the formation and deposition of only one thallium species – TlOH. The adsorption enthalpy was determined to be Δ HSiO2ads(TlOH) = −134 ± 5 kJ mol−1. A series of experiments using gold as stationary surface and different carrier gases resulted in the detection of two thallium species – metallic Tl (H2 as carrier gas) and TlOH (O2, O2+H2O and H2+H2O as pure carrier gas or carrier gas mixture) with Δ HAuads(Tl) = −270 ± 10 kJ mol− and Δ HAuads(TlOH) = −146 ± 3 kJ mol−1. These data demonstrate a weak interaction of TlOH with both quartz and gold surfaces. The data represent important information for the design of future experiments with the heavier homologue of Tl in group 13 of the periodic table – element 113 (E113).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A particle accelerator is any device that, using electromagnetic fields, is able to communicate energy to charged particles (typically electrons or ionized atoms), accelerating and/or energizing them up to the required level for its purpose. The applications of particle accelerators are countless, beginning in a common TV CRT, passing through medical X-ray devices, and ending in large ion colliders utilized to find the smallest details of the matter. Among the other engineering applications, the ion implantation devices to obtain better semiconductors and materials of amazing properties are included. Materials supporting irradiation for future nuclear fusion plants are also benefited from particle accelerators. There are many devices in a particle accelerator required for its correct operation. The most important are the particle sources, the guiding, focalizing and correcting magnets, the radiofrequency accelerating cavities, the fast deflection devices, the beam diagnostic mechanisms and the particle detectors. Most of the fast particle deflection devices have been built historically by using copper coils and ferrite cores which could effectuate a relatively fast magnetic deflection, but needed large voltages and currents to counteract the high coil inductance in a response in the microseconds range. Various beam stability considerations and the new range of energies and sizes of present time accelerators and their rings require new devices featuring an improved wakefield behaviour and faster response (in the nanoseconds range). This can only be achieved by an electromagnetic deflection device based on a transmission line. The electromagnetic deflection device (strip-line kicker) produces a transverse displacement on the particle beam travelling close to the speed of light, in order to extract the particles to another experiment or to inject them into a different accelerator. The deflection is carried out by the means of two short, opposite phase pulses. The diversion of the particles is exerted by the integrated Lorentz force of the electromagnetic field travelling along the kicker. This Thesis deals with a detailed calculation, manufacturing and test methodology for strip-line kicker devices. The methodology is then applied to two real cases which are fully designed, built, tested and finally installed in the CTF3 accelerator facility at CERN (Geneva). Analytical and numerical calculations, both in 2D and 3D, are detailed starting from the basic specifications in order to obtain a conceptual design. Time domain and frequency domain calculations are developed in the process using different FDM and FEM codes. The following concepts among others are analyzed: scattering parameters, resonating high order modes, the wakefields, etc. Several contributions are presented in the calculation process dealing specifically with strip-line kicker devices fed by electromagnetic pulses. Materials and components typically used for the fabrication of these devices are analyzed in the manufacturing section. Mechanical supports and connexions of electrodes are also detailed, presenting some interesting contributions on these concepts. The electromagnetic and vacuum tests are then analyzed. These tests are required to ensure that the manufactured devices fulfil the specifications. Finally, and only from the analytical point of view, the strip-line kickers are studied together with a pulsed power supply based on solid state power switches (MOSFETs). The solid state technology applied to pulsed power supplies is introduced and several circuit topologies are modelled and simulated to obtain fast and good flat-top pulses.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pb17Li is today a reference breeder material in diverse fusion R&D programs worldwide. Extracting dynamic and structural properties of liquid LiPb mixtures via molecular dynamics simulations, represent a crucial step for multiscale modeling efforts in order to understand the suitability of this compound for future Nuclear Fusion technologies. At present a Li-Pb cross potential is not available in the literature. Here we present our first results on the validation of two semi-empirical potentials for Li and Pb in liquid phase. Our results represent the establishment of a solid base as a previous but crucial step to implement a LiPb cross potential. Structural and thermodynamical analyses confirm that the implemented potentials for Li and Pb are realistic to simulate both elements in the liquid phase.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pb17Li is today a reference breeder material in diverse fusion R&D programs worldwide. Extracting dynamic and structural properties of liquid LiPb mixtures via molecular dynamics simulations, represent a crucial step for multiscale modeling efforts in order to understand the suitability of this compound for future Nuclear Fusion technologies. At present a Li-Pb cross potential is not available in the literature. Here we present our first results on the validation of two semi-empirical potentials for Li and Pb in liquid phase. Our results represent the establishment of a solid base as a previous but crucial step to implement a LiPb cross potential. Structural and thermodynamical analyses confirm that the implemented potentials for Li and Pb are realistic to simulate both elements in the liquid phase.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pb17Li is today a reference breeder material in diverse fusion R&D programs worldwide. Extracting dynamic and structural properties of liquid LiPb mixtures via molecular dynamics simulations, represent a crucial step for multiscale modeling efforts in order to understand the suitability of this compound for future Nuclear Fusion technologies. At present a Li-Pb cross potential is not available in the literature. Here we present our first results on the validation of two semi-empirical potentials for Li and Pb in liquid phase. Our results represent the establishment of a solid base as a previous but crucial step to implement a LiPb cross potential. Structural and thermodynamical analyses confirm that the implemented potentials for Li and Pb are realistic to simulate both elements in the liquid phase.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundamental research and modelling in plasma atomic physics continue to be essential for providing basic understanding of many different topics relevant to high-energy-density plasmas. The Atomic Physics Group at the Institute of Nuclear Fusion has accumulated experience over the years in developing a collection of computational models and tools for determining the atomic energy structure, ionization balance and radiative properties of, mainly, inertial fusion and laser-produced plasmas in a variety of conditions. In this work, we discuss some of the latest advances and results of our research, with emphasis on inertial fusion and laboratory-astrophysical applications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tritium breeding is an essential component of future fusion nuclear reactors. Nuclear fusion reactors require Kg quantities of tritium per year of operation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hydrogen isotopes play a critical role both in inertial and magnetic confinemen Nuclear Fusion. Since the preferent fuel needed for this technology is a mixture of deuterium and tritium. The study of these isotopes particularly at very low temperatures carries a technological interest in other applications. The present line promotes a deep study on the structural configuration that hydrogen and deuterium adopt at cryogenic temperatures and at high pressures. Typical conditions occurring in present Inertial Fusion target designs. Our approach is aims to determine the crystal structure characteristics, phase transitions and other parameters strongly correlated to variations of temperature and pressure.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hydrogen isotopes play a critical role both in inertial and magnetic confinement Nuclear Fusion. Since the preferent fuel needed for this technology is a mixture of deuterium and tritium. The study of these isotopes particularly at very low temperatures carries a technological interest in other applications. The present line promotes a deep study on the structural configuration that hydrogen and deuterium adopt at cryogenic temperatures and at high pressures. Typical conditions occurring in present Inertial Fusion target designs. Our approach is aims to determine the crystal structure characteristics, phase transitions and other parameters strongly correlated to variations of temperature and pressure. With this results is possible calculated the elastic constant and sound velocity for hydrogen and deuterium in molecular solid phase.