395 resultados para NMDA


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have compared the expression pattern of NMDA receptor subunits (NR1 and NR2A-D)and NRI splice variants (NR1-1a/1b,-2a/2b,-3a/3b,4a/4b) in motor neuron populations from adult Wistar rats that are vulnerable (hypoglossal, XII) or resistant (oculomotor, III) to death in amyotrophic lateral sclerosis (ALS). The major finding was higher levels of expression of the NR2B subunit in the hypoglossal nucleus. Quantitative real-time PCR showed that NR1 was expressed at a greater level than any of the NR2 subunits (> 15 fold greater, P

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We measured the effects of ethanol on glutamate receptor levels in the hippocampus of neonatal Wistar rats using a vapor chamber model. Two control groups were used; a normal suckle group and a maternal separation group. Levels of NMDA receptors were not significantly altered in ethanol-treated animals compared to the normal suckle control group, as shown by [H-3]MK-801 binding and Western blot analysis. However, MK-801 binding and NR1 subunit immunoreactivity were greatly reduced in the hippocampus of separation control animals. Neither ethanol treatment nor maternal separation altered levels of GluR1 or GluR2(4). These results have serious implications for the importance of maternal contact for normal brain development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background and purpose: Voltage-dependent block by Mg2+ is a cardinal feature of NMDA receptors which acts as a coincidence detector to prevent the receptor from over-activation. Inhibition of NMDA receptor currents by 5-hydroxytryptamine (5-HT) indicated that 5-HT, similar to Mg2+, binds within the membrane electric field. In the present study, we assessed whether point mutations of critical asparagine residues located within the selectivity filter of NR1 and NR2A subunits of NMDA receptor-channel affect voltage-dependent block by 5-HT. Experimental approach: The mode of action of 5-HT and Mg2+ on wild-type and mutated NMDA receptor-channels expressed in Xenopus oocytes was investigated using the two-electrode voltage clamp recording technique. Key results: The mutation within the NR1 subunit NR1(N0S or N0Q) strongly reduced the voltage dependent block by 5-HT and increased the IC50. The corresponding mutations within the NR2 subunits NR2A(N0Q or N + 1Q) reduced the block by 5-HT to a lesser extent. This is in contrast to the block produced by external Mg2+ where a substitution at the NR2A(N0) and NR2A(N + 1) sites but not at the NR1(N0) site significantly reduced Mg2+ block. Conclusion and implications: The block of NMDA receptor-channels by 5-HT depends on the NR1-subunit asparagine residue and to a lesser extent on the NR2A-subunit asparagine residues. These data suggest that the interaction of 5-HT with functionally important residues in a narrow constriction of the pore of the NMDA receptor-channel provides a significant barrier to ionic fluxes through the open channel due to energetic factors governed by chemical properties of the binding site and the electric field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The inherent neurotoxic potential ofthe endogenous excitatory amino acid glutamate, may be causally related to the pathogenesis ofAD neurodegeneration disorders. Neuronal excitotoxicity is conceivably mediated by the N-methyl-D-aspartate-(NMDA)-Ca2+- ionotropic receptor. NMDA receptors exist as multimeric complexes comprising proteins from two families – NR1 and NR2(A-D). The polyamines, spermine and spermidine bind to, and modulate NMDA receptor efficacy via interaction with exon 5, an alternatively-spliced, 21 amino acid, N-terminal cassette. AD associated cognitive impairment may therefore occur via subunitspecific NMDA receptor dysfunction effecting regional selectivity of neuronal degradation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Excitotoxicity may have role in neuronal death in many disorders including Alzheimer disease. Sensitivity of a cell to excitotoxicity may depend on its subtype of NMDA receptors. A drug that selectively reduced such overstimulation could limit susceptibility to damage. We examined the pharmacology of NMDA receptor subtypes in response to the agonists glutamate and glycine, the modulator spermine, and the antagonists conantokin-G and its Ala(7) analogue in Xenopus oo¨ cytes. Cells were injected with capped RNA coding for NMDA NR1 and NR2 subunits. Membrane currents induced by rapid application of agonists were recorded under two-electrode voltageclamp. Conantokins were bath-applied to give cumulative concentration responses. Spermine gave slightly different shifts in glutamate affinity when different NR1 splice variants were combined with NR2A subunits. In the presence of spermine, both an increase and a decrease in affinity for glutamate were seen with differing subunit combinations that could not be explained by the absence or presence of the N-terminal 23-amino-acid insert.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the clinical setting, chronic administration of high doses of systemic morphine may result in neuro-excitatory behaviours such as myoclonus and allodynia in some patients. Additionally, high doses of m-opioid agonists such as morphine administered chronically by the intrathecal route in both rats and humans, as well as DAMGO in rats, have been reported to produce neuro-excitatory behaviours. However, more recently, it has begun to be appreciated that even at normal analgesic doses, opioids such as morphine are capable not only of activating pain inhibitory systems (analgesia/antinociception), but they also activate pain facilitatory systems such that post-opioid allodynia/hyperalgesia may be evident after cessation of opioid treatment. Whilst it is well documented that opioid receptors mediate the inhibitory effects of opioid analgesics, the excitatory and pro-nociceptive effects of opioids appear to involve indirect activation of N-methyl-D-aspartate (NMDA) receptors, such that the extent of pain relief produced may be the net effect of these two opposing actions. Apart from the NMDA-nitric oxide (NO) pro-nociceptive signaling cascade, considerable evidence also implicates dynorphin A as well as the endogenous anti-opioid peptides cholecystokinin (CCK), neuropeptide FF (NPFF) and orphanin FQ/nociceptin, in mediating opioid-induced neuro-excitation and abnormal pain behaviours. Apart from the neuro-excitatory effects that may be produced by the parent opioid, systemic administration of some opioid analgesics such as morphine and hydromorphone in rats and humans results in their rapid conversion to 3-glucuronide metabolites that also contribute significantly to the neuro-excitatory and abnormal pain behaviours produced