983 resultados para Myocardial function


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The pathogenesis of fibrosis and the functional features of pressure overload myocardial hypertrophy are still controversial. The objectives of the present study were to evaluate the function and morphology of the hypertrophied myocardium in renovascular hypertensive (RHT) rats. Male Wistar rats were sacrificed at week 4 (RHT4) and 8 (RHT8) after unilateral renal ischemia (Goldblatt II hypertension model). Normotensive rats were used as controls. Myocardial function was analyzed in isolated papillary muscle preparations, morphological features were defined by light microscopy, and myocardial hydroxyproline concentration (HOP) was determined by spectrophotometry. Renal artery clipping resulted in elevated systolic arterial pressure (RHT4: 178 ± 19 mmHg and RHT8: 194 ± 24 mmHg, P<0.05 vs control: 123 ± 7 mmHg). Myocardial hypertrophy was observed in both renovascular hypertensive groups. The myocardial HOP concentration was increased in the RHT8 group (control: 2.93 ± 0.38 µg/mg; RHT4: 3.02 ± 0.40 µg/mg; RHT8: 3.44 ± 0.45 µg/mg of dry tissue, P<0.05 vs control and RHT4 groups). The morphological study demonstrated myocyte necrosis, vascular damage and cellular inflammatory response throughout the experimental period. The increased cellularity was more intense in the adventitia of the arterioles. As a consequence of myocyte necrosis, there was an early, local, conjunctive stroma collapse with disarray and thickening of the argyrophilic interstitial fibers, followed by scarring. The functional data showed an increased passive myocardial stiffness in the RHT4 group. We conclude that renovascular hypertension induces myocyte and arteriole necrosis. Reparative fibrosis occurred as a consequence of the inflammatory response to necrosis. The mechanical behavior of the isolated papillary muscle was normal, except for an early increased myocardial passive stiffness

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose - To analyse the influence of mannitol added to Krebs-Henseleit (KH) solution on the myocardium edema and myocardial function. Methods - Isolated rat heart under isovolumetric contractions studied according to Langendorff's technique were perfused with KH solution at constant flow during 90 min. The coronary perfusion pressure, diastolic and systolic pressures were recorded at every 15 min. At the end of the experiment, myocardium water content was measured in hearts perfused with KH solution (group I, n = 9) and in hearts perfused with KH solution plus 8 mM mannitol (group II, n = 8). These results were compared to non-perfused control heart (n = 9). Results - Myocardial water content was statistically higher in group I (80.8 ± 1.3%) compared to group II (78.1 ± 0.7%) and control group (75.5 ± 0.5%). Systolic arterial pressure was statistically higher in group I (86.2 ± 11.5 mmHg) compared to group II (72.7 ± 21.1 mmHg). There was no difference in the diastolic pressure between the two groups. Coronary perfusion pressure (Pp) increased progressively during the experiment in both groups. However, Pp was lower in group II than in group I. Conclusion - Mannitol added to KH solution significantly attenuates the myocardium edema in the isolated perfused rat heart.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose - To investigate the participation of contractile state and relaxation in cardiac muscle dysfunction during the transition from stable hypertrophy to cardiac decompensation in aging spontaneously hypertensive rats (SHR). Methods - isolated left ventricular papillary muscle function was studied in SHR with heart failure (SHR-F), in age-matched SHR without evidence of heart failure (SHR-NF), and in nonhypertensive controls Wistar-Kyoto rats (WKY). Muscles were analised in isometric and isotonic contractions in Krebs-Henseleit solution with calcium concentration of 1.25mM at 28°C. Results - Papillary muscles from SHR-F and SHR-NF demonstrated decreased active tension development and shortening velocity relative to normotensive WKY (p<0.05). SHR-F and SHR-NF did not differ. Compared with SHR-NF and WKY, muscle passive stiffness was increased in the failing SHR (p<0.05 versus WKY and SHR-NF). This parameter did not differ between SHR-NF and WKY (p> 0.05). Conclusion - These data suggest that the progression from stable hypertrophy to heart failure is associated with changes in the passive stiffness and is not related to depression of myocardial contractile function.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: The aim of this study was to analyze stable hypertrophied myocardial function and its response to inotropic maneuvers in rats submitted to renovascular hypertension for a 10-week period (RHT group, n=10). Material/Methods: Myocardial performance was studied in isolated left ventricle papillary muscles in isometric contraction under the following conditions: at postrest contraction of 30 seconds (PRC), at extracellular calcium (ECa 2+) chloride concentration of 1.25 and 5.20 mM, and after beta-adrenergic stimulation with 10 -6 M isoproterenol (ISOP). Results: The results were compared with normotensive Wistar controls rats (C group, n=10). In basal condition, resting tension, and contraction time (TPT) were greater, while relaxation time (RT 50) tended to be longer in RHT than C group. PRC and ISOP promoted a similar change in muscle function response intensity (Δ) in both groups. ECa 2+ shift did not change TPT in the C group and decreased TPT in the RHT animals; Δ was different between these groups. RT 50 increased in C and decreased in RHT, both without statistical significance; however, Δ was different. Conclusions: These results suggest that hypertrophied myocardial dysfunction may be attibuted to changes in intracellular calcium cycling. © Med Sci Monit, 2010.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fatty acids are the main substrates used by mitochondria to provide myocardial energy under normal conditions. During heart remodeling, however, the fuel preference switches to glucose. In the earlier stages of cardiac remodeling, changes in energy metabolism are considered crucial to protect the heart from irreversible damage. Furthermore, low fatty acid oxidation and the stimulus for glycolytic pathway lead to lipotoxicity, acidosis, and low adenosine triphosphate production. While myocardial function is directly associated with energy metabolism, the metabolic pathways could be potential targets for therapy in heart failure. © 2013 by Lippincott Williams & Wilkins.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Medicina Veterinária - FCAV

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Fisiopatologia em Clínica Médica - FMB

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)