75 resultados para Metagenomics


Relevância:

10.00% 10.00%

Publicador:

Resumo:

ACM Computing Classification System (1998): D.2.11, D.1.3, D.3.1, J.3, C.2.4.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Metagenomics is the culture-independent study of genetic material obtained directly from environmental samples. It has become a realistic approach to understanding microbial communities thanks to advances in high-throughput DNA sequencing technologies over the past decade. Current research has shown that different sites of the human body house varied bacterial communities. There is a strong correlation between an individual’s microbial community profile at a given site and disease. Metagenomics is being applied more often as a means of comparing microbial profiles in biomedical studies. The analysis of the data collected using metagenomics can be quite challenging and there exist a plethora of tools for interpreting the results. An automatic analytical workflow for metagenomic analyses has been implemented and tested using synthetic datasets of varying quality. It is able to accurately classify bacteria by taxa and correctly estimate the richness and diversity of each set. The workflow was then applied to the study of the airways microbiome in Chronic Obstructive Pulmonary Disease (COPD). COPD is a progressive lung disease resulting in narrowing of the airways and restricted airflow. Despite being the third leading cause of death in the United States, little is known about the differences in the lung microbial community profiles of healthy individuals and COPD patients. Bronchoalveolar lavage (BAL) samples were collected from COPD patients, active or ex-smokers, and never smokers and sequenced by 454 pyrosequencing. A total of 56 individuals were recruited for the study. Substantial colonization of the lungs was found in all subjects and differentially abundant genera in each group were identified. These discoveries are promising and may further our understanding of how the structure of the lung microbiome is modified as COPD progresses. It is also anticipated that the results will eventually lead to improved treatments for COPD.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The presence of inhibitory substances in biological forensic samples has, and continues to affect the quality of the data generated following DNA typing processes. Although the chemistries used during the procedures have been enhanced to mitigate the effects of these deleterious compounds, some challenges remain. Inhibitors can be components of the samples, the substrate where samples were deposited or chemical(s) associated to the DNA purification step. Therefore, a thorough understanding of the extraction processes and their ability to handle the various types of inhibitory substances can help define the best analytical processing for any given sample. A series of experiments were conducted to establish the inhibition tolerance of quantification and amplification kits using common inhibitory substances in order to determine if current laboratory practices are optimal for identifying potential problems associated with inhibition. DART mass spectrometry was used to determine the amount of inhibitor carryover after sample purification, its correlation to the initial inhibitor input in the sample and the overall effect in the results. Finally, a novel alternative at gathering investigative leads from samples that would otherwise be ineffective for DNA typing due to the large amounts of inhibitory substances and/or environmental degradation was tested. This included generating data associated with microbial peak signatures to identify locations of clandestine human graves. Results demonstrate that the current methods for assessing inhibition are not necessarily accurate, as samples that appear inhibited in the quantification process can yield full DNA profiles, while those that do not indicate inhibition may suffer from lowered amplification efficiency or PCR artifacts. The extraction methods tested were able to remove >90% of the inhibitors from all samples with the exception of phenol, which was present in variable amounts whenever the organic extraction approach was utilized. Although the results attained suggested that most inhibitors produce minimal effect on downstream applications, analysts should practice caution when selecting the best extraction method for particular samples, as casework DNA samples are often present in small quantities and can contain an overwhelming amount of inhibitory substances.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One in 3,000 people in the US are born with cystic fibrosis (CF), a genetic disorder affecting the reproductive system, pancreas, and lungs. Lung disease caused by chronic bacterial and fungal infections is the leading cause of morbidity and mortality in CF. Identities of the microbes are traditionally determined by culturing followed by phenotypic and biochemical assays. It was first thought that the bacterial infections were caused by a select handful of bacteria such as S. aureus, H. influenzae, B. cenocepacia, and P. aeruginosa. With the advent of PCR and molecular techniques, the polymicrobial nature of the CF lung became evident. The CF lung contains numerous bacteria and the communities are diverse and unique to each patient. The total complexity of the bacterial infections is still being determined. In addition, only a few members of the fungal communities have been identified. Much of the fungal community composition is still a mystery. This dissertation addresses this gap in knowledge. A snap shot of CF sputa bacterial community was obtained using the length heterogeneity-PCR community profiling technique. The profiles show that south Florida CF patients have a unique, diverse, and dynamic bacterial community which changes over time. The identities of the bacteria and fungi present were determined using the state-of-the-art 454 sequencing. Sequencing results show that the CF lung microbiome contains commonly cultured pathogenic bacteria, organisms considered a part of the healthy core biome, and novel organisms. Understanding the dynamic changes of these identified microbes will ultimately lead to better therapeutical interventions. Early detection is key in reducing the lung damage caused by chronic infections. Thus, there is a need for accurate and sensitive diagnostic tests. This issue was addressed by designing a bacterial diagnostic tool targeted towards CF pathogens using SPR. By identifying the organisms associated with the CF lung and understanding their community interactions, patients can receive better treatment and live longer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The microorganisms have a vast genetic diversity and they are present throughout the biosphere, however, only about 1% of the species can be cultivated by traditional cultivation techniques. Within this diversity there is a huge pool genetic and biological being explored. The metagenomics has enabled direct access to microbial genome derived from environmental samples using independent methods of cultivation. The methodology enables to obtain functional information about the proteins, as well as identify potential products with biotechnological interest and new industrially exploitable biological resources, such as new solutions to environmental impacts. Oil-contaminated areas are characterized by a large accumulation of hydrocarbons and surfactants may be used for bioremediation. Thus, the metagenomic approach was used in this study in order to select genes involved in the degradation and hydrocarbon emulsification. In a previous work, the environmental DNA (eDNA) was extracted from soil samples collected from two different areas (Caatinga and Saline River) of Rio Grande do Norte (Brazil), the metagenomic libraries were constructed and functionally analyzed. The clone able to degrade the oil was evaluated for the ability to synthesize biosurfactants. The sequence analysis revealed an ORF with 897 bp, 298 amino acids and a protein with around 34 kDa. The search for homology in GenBank revealed sequence similarity with a hypothetical protein of representatives Halobacteriaceae family, who were recently shown as strains producing biosurfactants. The presence of the inserted coding sequence and the acquired phenotype was confirmed. Primers were designed and the ORF amplified by PCR. The ORF was subcloned into pETDuet-1 expression vector for subsequent purification of the protein of interest containing a histidine tail. The tests performed to confirm the biosurfactant activity and the ability of hydrocarbon degradation showed positive results. The immunodetection test (western blot) using the monoclonal AntiHis® confirmed the presence of the environmental protein. This study was the first to report a possible protein with biosurfactant activity obtained from a metagenomic approach

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Runting-stunting syndrome (RSS) in broiler chickens is an enteric disease that causes significant economic losses to poultry producers worldwide due to elevated feed conversion ratios, decreased body weight during growth, and excessive culling. Of specific interest are the viral agents associated with RSS which have been difficult to fully characterise to date. Past research into the aetiology of RSS has implicated a wide variety of RNA and DNA viruses however, to date, no individual virus has been identified as the main agent of RSS and the current opinion is that it may be caused by a community of viruses, collectively known as the virome. This paper attempts to characterise the viral pathogens associated with 2 – 3 week old RSS-affected and unaffected broiler chickens using next-generation sequencing and comparative metagenomics. Analysis of the viromes identified a total of 20 DNA & RNA viral families, along with 2 unidentified categories, comprised of 31 distinct viral genera and 7 unclassified genera. The most abundant viral families identified in this study were the Astroviridae, Caliciviridae, Picornaviridae, Parvoviridae, Coronaviridae, Siphoviridae, and Myoviridae. This study has identified historically significant viruses associated with the disease such as chicken astrovirus, avian nephritis virus, chicken parvovirus, and chicken calicivirus along with relatively novel viruses such as chicken megrivirus and sicinivirus 1 and will help expand the knowledge related to enteric disease in broiler chickens, provide insights into the viral constituents of a healthy avian gut, and identify a variety of enteric viruses and viral communities appropriate for further study.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O organismo humano encontra-se colonizado por uma complexa diversidade de microrganismos. O conjunto destes microrganismos, que incluem as bactérias, fungos, vírus e protozoários, no homem denomina- se microbioma humano. Estima-se que entre a superfície interna e externa, o microbioma humano seja composto por 100 triliões de microrganismos. O microbioma humano varia muito nas mais diversas regiões do nosso corpo, dependendo de condições ambientais. Sabe-se, por exemplo, que nas regiões mais húmidas e quentes encontram-se uma maior concentração de microrganismos, enquanto que nas regiões menos húmidas, existe uma quantidade menor de microrganismos. O microbioma é de vital importância para a saúde humana, e o seu estudo conduz a um melhor conhecimento da sua complexa dinâmica, podendo conduzir ao desenvolvimento de novas formas de diagnóstico e até mesmo de tratamento de certas patologias. Assim sendo, a compreensão da diversidade fisiológica humana, bem como a de outros animais, passa pelo conhecimento da distribuição destes microrganismos nos diferentes órgãos e seu papel biológico. O desenvolvimento de técnicas de genética permitiram o estudo metagenómico importante para descrever a diversidade do microbioma humano, que não seria possível através da cultura das espécies pois um grande número destas não é cultivável. Esta dissertação tem como principal objetivo descrever o microbioma humano e de que forma esta influência o sistema imunitário. E numa segunda parte dar uma visão sobre a importância da análise metagenómica na identificação e caraterização do microbioma Humano.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The rumen is home to a diverse population of microorganisms encompassing all three domains of life: Bacteria, Archaea, and Eukarya. Viruses have also been documented to be present in large numbers; however, little is currently known about their role in the dynamics of the rumen ecosystem. This research aimed to use a comparative genomics approach in order to assess the potential evolutionary mechanisms at work in the rumen environment. We proposed to do this by first assessing the diversity and potential for horizontal gene transfer (HGT) of multiple strains of the cellulolytic rumen bacterium, Ruminococcus flavefaciens, and then by conducting a survey of rumen viral metagenome (virome) and subsequent comparison of the virome and microbiome sequences to ascertain if there was genetic information shared between these populations. We hypothesize that the bacteriophages play an integral role in the community dynamics of the rumen, as well as driving the evolution of the rumen microbiome through HGT. In our analysis of the Ruminococcus flavefaciens genomes, there were several mobile elements and clustered regularly interspaced short palindromic repeat (CRISPR) sequences detected, both of which indicate interactions with bacteriophages. The rumen virome sequences revealed a great deal of diversity in the viral populations. Additionally, the microbial and viral populations appeared to be closely associated; the dominant viral types were those that infect the dominant microbial phyla. The correlation between the distribution of taxa in the microbiome and virome sequences as well as the presence of CRISPR loci in the R. flavefaciens genomes, suggested that there is a “kill-the-winner” community dynamic between the viral and microbial populations in the rumen. Additionally, upon comparison of the rumen microbiome and rumen virome sequences, we found that there are many sequence similarities between these populations indicating a potential for phage-mediated HGT. These results suggest that the phages represent a gene pool in the rumen that could potentially contain genes that are important for adaptation and survival in the rumen environment, as well as serving as a molecular ‘fingerprint’ of the rumen ecosystem.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hepatitis C virus (HCV) is emerging as one of the leading causes of morbidity and mortality in individuals infected with HIV and has overtaken AIDS-defining illnesses as a cause of death in HIV patient populations who have access to highly active antiretroviral therapy. For many years, the clonal analysis was the reference method for investigating viral diversity. In this thesis, a next generation sequencing (NGS) approach was developed using 454 pyrosequencing and Illumina-based technology. A sequencing pipeline was developed using two different NGS approaches, nested PCR, and metagenomics. The pipeline was used to study the viral populations in the sera of HCV-infected patients from a unique cohort of 160 HIV-positive patients with early HCV infection. These pipelines resulted in an improved understanding of HCV quasispecies dynamics, especially regarding studying response to treatment. Low viral diversity at baseline correlated with sustained virological response (SVR) while high viral diversity at baseline was associated with treatment failure. The emergence of new viral strains following treatment failure was most commonly associated with emerging dominance of pre-existing minority variants rather than re-infection. In the new era of direct-acting antivirals, next generation sequencing technologies are the most promising tool for identifying minority variants present in the HCV quasispecies populations at baseline. In this cohort, several mutations conferring resistance were detected in genotype 1a treatment-naïve patients. Further research into the impact of baseline HCV variants on SVR rates should be carried out in this population. A clearer understanding of the properties of viral quasispecies would enable clinicians to make improved treatment choices for their patients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Next Generation Sequencing (NGS) allows to sequence the whole genome of an organism, compared to Maxam and Gilbert and Sanger sequencing that only allow to sequence, hardly, a single gene. Removing the separation of DNA fragments by electrophoresis, and the development of techniques that let the parallelization (analysing simultaneously several DNA fragments) have been crucial for the improvements of this process. The new companies in this ambit, Roche and Illumina, bet for different protocols to achieve these goals. Illumina bets for the sequencing by synthesis (SBS), requiring the library preparation and the use of adapters. Likewise, Illumina has replaced Roche because its lower rate of misincorporation, making it ideal for studies of genetic variability, transcriptomic, epigenomic, and metagenomic, in which this study will focus. However, it is noteworthy that the last progress in sequencing is carried out by the third generation sequencing, using nanotechnology to design small sequencers that sequence the whole genome of an organism quickly and inexpensively. Moreover, they provide more reliable data than current systems because they sequence a single molecule, solving the problem of synchronisation. In this way, PacBio and Nanopore allow a great progress in diagnostic and personalized medicine. Metagenomics provide to make a qualitative and quantitative analysis of the various species present in a sample. The main advantage of this technique is the no necessary isolation and growth of the species, allowing the analysis of nonculturable species. The Illumina protocol studies the variable regions of the 16S rRNA gene, which contains variable and not variables regions providing a phylogenetic classification. Therefore, metagenomics is a topic of interest to know the biodiversity of complex ecosystems and to study the microbiome of patients given the high involvement with certain microbial profiles on the condition of certain metabolic diseases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tese (doutorado)—Universidade de Brasília, Instituto de Ciências Biológicas, Programa de Pós-Graduação em Biologia Molecular, 2016.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Biológicas, Programa de Pós-Graduação em Biologia Microbiana, 2016.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The class Kinetoplastea encompasses both free-living and parasitic species from a wide range of hosts. Several representatives of this group are responsible for severe human diseases and for economic losses in agriculture and livestock. While this group encompasses over 30 genera, most of the available information has been derived from the vertebrate pathogenic genera Leishmania and Trypanosoma. Recent studies of the previously neglected groups of Kinetoplastea indicated that the actual diversity is much higher than previously thought. This article discusses the known segment of kinetoplastid diversity and how gene-directed Sanger sequencing and next-generation sequencing methods can help to deepen our knowledge of these interesting protists.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Antibiotic resistance is an increasing threat to our ability to treat infectious diseases. Thus, understanding the effects of antibiotics on the gut microbiota, as well as the potential for such populations to act as a reservoir for resistance genes, is imperative. This thesis set out to investigate the gut microbiota of antibiotic treated infants compared to untreated controls using high-throughput DNA sequencing. The results demonstrated the significant effects of antibiotic treatment, resulting in increased proportions of Proteobacteria and decreased proportions of Bifidobacterium. The species diversity of bifidobacteria was also reduced. This thesis also highlights the ability of the human gut microbiota to act as an antibiotic resistance reservoir. Using metagenomic DNA extracted from faecal samples from adult males, PCR was employed to demonstrate the prevalence and diversity of aminoglycoside and β-lactam resistance genes in the adult gut microbiota and highlighted the merits of the approach adopted. Using infant faecal samples, we constructed and screened a second fosmid metagenomic bank for the same families of resistance genes and demonstrated that the infant gut microbiota is also a reservoir for resistance genes. Using in silico analysis we highlighted the existence of putative aminoglycoside and β-lactam resistance determinants within the genomes of Bifidobacterium species. In the case of the β- lactamases, these appear to be mis-annotated. However, through homologous recombination-mediated insertional inactivation, we have demonstrated that the putative aminoglycoside resistance proteins do contribute to resistance. In additional studies, we investigated the effects of short bowel syndrome on infant gut microbiota, the immune system and bile acid metabolism. We also sequenced the microbiota of the human vermiform appendix, highlighting its complexity. Finally, this thesis demonstrated the strain specific nature of 2 different probiotic CLA-producing Bifidobacterium breve on the murine gut microbiota.