923 resultados para EVOLUTIONARY


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This PhD study has examined the population genetics of the Russian wheat aphid (RWA, Diuraphis noxia), one of the world’s most invasive agricultural pests, throughout its native and introduced global range. Firstly, this study investigated the geographic distribution of genetic diversity within and among RWA populations in western China. Analysis of mitochondrial data from 18 sites provided evidence for the long-term existence and expansion of RWAs in western China. The results refute the hypothesis that RWA is an exotic species only present in China since 1975. The estimated date of RWA expansion throughout western China coincides with the debut of wheat domestication and cultivation practices in western Asia in the Holocene. It is concluded that western China represents the limit of the far eastern native range of this species. Analysis of microsatellite data indicated high contemporary gene flow among northern populations in western China, while clear geographic isolation between northern and southern populations was identified across the Tianshan mountain range and extensive desert regions. Secondly, this study analyzed the worldwide pathway of invasion using both microsatellite and endosymbiont genetic data. Individual RWAs were obtained from native populations in Central Asia and the Middle East and invasive populations in Africa and the Americas. Results indicated two pathways of RWA invasion from 1) Syria in the Middle East to North Africa and 2) Turkey to South Africa, Mexico and then North and South America. Very little clone diversity was identified among invasive populations suggesting that a limited founder event occurred together with predominantly asexual reproduction and rapid population expansion. The most likely explanation for the rapid spread (within two years) from South Africa to the New World is by human movement, probably as a result of the transfer of wheat breeding material. Furthermore, the mitochondrial data revealed the presence of a universal haplotype and it is proposed that this haplotype is representative of a wheat associated super-clone that has gained dominance worldwide as a result of the widespread planting of domesticated wheat. Finally, this study examined salivary gland gene diversity to determine whether a functional basis for RWA invasiveness could be identified. Peroxidase DNA sequence data were obtained for a selection of worldwide RWA samples. Results demonstrated that most native populations were polymorphic while invasive populations were monomorphic, supporting previous conclusions relating to demographic founder effects in invasive populations. Purifying selection most likely explains the existence of a universal allele present in Middle Eastern populations, while balancing selection was evident in East Asian populations. Selection acting on the peroxidase gene may provide an allele-dependent advantage linked to the successful establishment of RWAs on wheat, and ultimately their invasion potential. In conclusion, this study is the most comprehensive molecular genetic investigation of RWA population genetics undertaken to date and provides significant insights into the source and pathway of global invasion and the potential existence of a wheat-adapted genotype that has colonised major wheat growing countries worldwide except for Australia. This research has major biosecurity implications for Australia’s grain industry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is exciting to be living at a time when the big questions in biology can be investigated using modern genetics and computing [1]. Bauzà-Ribot et al.[2] take on one of the fundamental drivers of biodiversity, the effect of continental drift in the formation of the world’s biota 3 and 4, employing next-generation sequencing of whole mitochondrial genomes and modern Bayesian relaxed molecular clock analysis. Bauzà-Ribot et al.[2] conclude that vicariance via plate tectonics best explains the genetic divergence between subterranean metacrangonyctid amphipods currently found on islands separated by the Atlantic Ocean. This finding is a big deal in biogeography, and science generally [3], as many other presumed biotic tectonic divergences have been explained as probably due to more recent transoceanic dispersal events [4]. However, molecular clocks can be problematic 5 and 6 and we have identified three issues with the analyses of Bauzà-Ribot et al.[2] that cast serious doubt on their results and conclusions. When we reanalyzed their mitochondrial data and attempted to account for problems with calibration 5 and 6, modeling rates across branches 5 and 7 and substitution saturation [5], we inferred a much younger date for their key node. This implies either a later trans-Atlantic dispersal of these crustaceans, or more likely a series of later invasions of freshwaters from a common marine ancestor, but either way probably not ancient tectonic plate movements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cloud computing is an emerging computing paradigm in which IT resources are provided over the Internet as a service to users. One such service offered through the Cloud is Software as a Service or SaaS. SaaS can be delivered in a composite form, consisting of a set of application and data components that work together to deliver higher-level functional software. SaaS is receiving substantial attention today from both software providers and users. It is also predicted to has positive future markets by analyst firms. This raises new challenges for SaaS providers managing SaaS, especially in large-scale data centres like Cloud. One of the challenges is providing management of Cloud resources for SaaS which guarantees maintaining SaaS performance while optimising resources use. Extensive research on the resource optimisation of Cloud service has not yet addressed the challenges of managing resources for composite SaaS. This research addresses this gap by focusing on three new problems of composite SaaS: placement, clustering and scalability. The overall aim is to develop efficient and scalable mechanisms that facilitate the delivery of high performance composite SaaS for users while optimising the resources used. All three problems are characterised as highly constrained, large-scaled and complex combinatorial optimisation problems. Therefore, evolutionary algorithms are adopted as the main technique in solving these problems. The first research problem refers to how a composite SaaS is placed onto Cloud servers to optimise its performance while satisfying the SaaS resource and response time constraints. Existing research on this problem often ignores the dependencies between components and considers placement of a homogenous type of component only. A precise problem formulation of composite SaaS placement problem is presented. A classical genetic algorithm and two versions of cooperative co-evolutionary algorithms are designed to now manage the placement of heterogeneous types of SaaS components together with their dependencies, requirements and constraints. Experimental results demonstrate the efficiency and scalability of these new algorithms. In the second problem, SaaS components are assumed to be already running on Cloud virtual machines (VMs). However, due to the environment of a Cloud, the current placement may need to be modified. Existing techniques focused mostly at the infrastructure level instead of the application level. This research addressed the problem at the application level by clustering suitable components to VMs to optimise the resource used and to maintain the SaaS performance. Two versions of grouping genetic algorithms (GGAs) are designed to cater for the structural group of a composite SaaS. The first GGA used a repair-based method while the second used a penalty-based method to handle the problem constraints. The experimental results confirmed that the GGAs always produced a better reconfiguration placement plan compared with a common heuristic for clustering problems. The third research problem deals with the replication or deletion of SaaS instances in coping with the SaaS workload. To determine a scaling plan that can minimise the resource used and maintain the SaaS performance is a critical task. Additionally, the problem consists of constraints and interdependency between components, making solutions even more difficult to find. A hybrid genetic algorithm (HGA) was developed to solve this problem by exploring the problem search space through its genetic operators and fitness function to determine the SaaS scaling plan. The HGA also uses the problem's domain knowledge to ensure that the solutions meet the problem's constraints and achieve its objectives. The experimental results demonstrated that the HGA constantly outperform a heuristic algorithm by achieving a low-cost scaling and placement plan. This research has identified three significant new problems for composite SaaS in Cloud. Various types of evolutionary algorithms have also been developed in addressing the problems where these contribute to the evolutionary computation field. The algorithms provide solutions for efficient resource management of composite SaaS in Cloud that resulted to a low total cost of ownership for users while guaranteeing the SaaS performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research looked at using the metaphor of biological evolution as a way of solving architectural design problems. Drawing from fields such as language grammars, algorithms and cellular biology, this thesis looked at ways of encoding design information for processing. The aim of this work is to help in the building of software that support the architectural design process and allow designers to examine more variations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The K-means algorithm is one of the most popular techniques in clustering. Nevertheless, the performance of the K-means algorithm depends highly on initial cluster centers and converges to local minima. This paper proposes a hybrid evolutionary programming based clustering algorithm, called PSO-SA, by combining particle swarm optimization (PSO) and simulated annealing (SA). The basic idea is to search around the global solution by SA and to increase the information exchange among particles using a mutation operator to escape local optima. Three datasets, Iris, Wisconsin Breast Cancer, and Ripley’s Glass, have been considered to show the effectiveness of the proposed clustering algorithm in providing optimal clusters. The simulation results show that the PSO-SA clustering algorithm not only has a better response but also converges more quickly than the K-means, PSO, and SA algorithms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a new hybrid evolutionary algorithm based on Particle Swarm Optimization (PSO) and Ant Colony Optimization (ACO) for daily Volt/Var control in distribution system including Distributed Generators (DGs). Due to the small X/R ratio and radial configuration of distribution systems, DGs have much impact on this problem. Since DGs are independent power producers or private ownership, a price based methodology is proposed as a proper signal to encourage owners of DGs in active power generation. Generally, the daily Volt/Var control is a nonlinear optimization problem. Therefore, an efficient hybrid evolutionary method based on Particle Swarm Optimization and Ant Colony Optimization (ACO), called HPSO, is proposed to determine the active power values of DGs, reactive power values of capacitors and tap positions of transformers for the next day. The feasibility of the proposed algorithm is demonstrated and compared with methods based on the original PSO, ACO and GA algorithms on IEEE 34-bus distribution feeder.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an efficient hybrid evolutionary optimization algorithm based on combining Ant Colony Optimization (ACO) and Simulated Annealing (SA), called ACO-SA, for distribution feeder reconfiguration (DFR) considering Distributed Generators (DGs). Due to private ownership of DGs, a cost based compensation method is used to encourage DGs in active and reactive power generation. The objective function is summation of electrical energy generated by DGs and substation bus (main bus) in the next day. The approach is tested on a real distribution feeder. The simulation results show that the proposed evolutionary optimization algorithm is robust and suitable for solving DFR problem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper deals with an efficient hybrid evolutionary optimization algorithm in accordance with combining the ant colony optimization (ACO) and the simulated annealing (SA), so called ACO-SA. The distribution feeder reconfiguration (DFR) is known as one of the most important control schemes in the distribution networks, which can be affected by distributed generations (DGs) for the multi-objective DFR. In such a case, DGs is used to minimize the real power loss, the deviation of nodes voltage and the number of switching operations. The approach is carried out on a real distribution feeder, where the simulation results show that the proposed evolutionary optimization algorithm is robust and suitable for solving the DFR problem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The standard approach to industrial economics starts with the industry’s basic conditions, then runs through the structure–conduct–performance paradigm of industrial organization, and finally considers government regulation and policy. Most creative industries segments have been studied in this way, for example in Albarran (2002) and Caves (2000). These approaches use standard economic analysis to explain the particular properties and characteristics of a specific industrial sector. The overview presented here is different again. It focuses on the creative industries and examines their economic effect, specifically their contribution to economic evolu -tion. This is an evolutionary systems approach to industrial analysis, where we seek to understand how a sector fits into a broader system of production, consumption, technology, trade and institutions. The evolutionary approach focuses on innovation, economic growth and endogenous transformation. So, rather than using economics to explain static or industrial-organization features of the creative industries, we are using an open systems view of the creative industries to explain dynamic ‘Schumpeterian’ features of the broader economy. The creative industries are drivers of economic transformation through their role in the origination of new ideas, in consumer adoption, and in facilitating the institutional embedding of new ideas into the economic order. This is not a novel idea, as economists have long understood that particular activities are drivers of economic growth and development, for example research and development, and also that particular sectors are instrumental to this process, for example high-technology sectors. What is new is the argument that cultural and creative sectors are also a key part of this process of economic evolution. We will review the case for that claim, and outline purported mechanisms. We will also consider why policy settings in the creative industries should be more in line with innovation and growth policy than with industry policy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two lecture notes describe recent developments of evolutionary multi objective optimization (MO) techniques in detail and their advantages and drawbacks compared to traditional deterministic optimisers. The role of Game Strategies (GS), such as Pareto, Nash or Stackelberg games as companions or pre-conditioners of Multi objective Optimizers is presented and discussed on simple mathematical functions in Part I , as well as their implementations on simple aeronautical model optimisation problems on the computer using a friendly design framework in Part II. Real life (robust) design applications dealing with UAVs systems or Civil Aircraft and using the EAs and Game Strategies combined material of Part I & Part II are solved and discussed in Part III providing the designer new compromised solutions useful to digital aircraft design and manufacturing. Many details related to Lectures notes Part I, Part II and Part III can be found by the reader in [68].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis is a study of new design methods for allowing evolutionary algorithms to be more effectively utilised in aerospace optimisation applications where computation needs are high and computation platform space may be restrictive. It examines the applicability of special hardware computational platforms known as field programmable gate arrays and shows that with the right implementation methods they can offer significant benefits. This research is a step forward towards the advancement of efficient and highly automated aircraft systems for meeting compact physical constraints in aerospace platforms and providing effective performance speedups over traditional methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

These lecture notes describe the use and implementation of a framework in which mathematical as well as engineering optimisation problems can be analysed. The foundations of the framework and algorithms described -Hierarchical Asynchronous Parallel Evolutionary Algorithms (HAPEAs) - lie upon traditional evolution strategies and incorporate the concepts of a multi-objective optimisation, hierarchical topology, asynchronous evaluation of candidate solutions , parallel computing and game strategies. In a step by step approach, the numerical implementation of EAs and HAPEAs for solving multi criteria optimisation problems is conducted providing the reader with the knowledge to reproduce these hand on training in his – her- academic or industrial environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

These lecture notes highlight some of the recent applications of multi-objective and multidisciplinary design optimisation in aeronautical design using the framework and methodology described in References 8, 23, 24 and in Part 1 and 2 of the notes. A summary of the methodology is described and the treatment of uncertainties in flight conditions parameters by the HAPEAs software and game strategies is introduced. Several test cases dealing with detailed design and computed with the software are presented and results discussed in section 4 of these notes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Galapagos archipelago is characterized by a high degree of endemism across many taxa, linked to the archpelago's oceanic origin and distance from other colonizing land masses. A population of ~ 500 American Flamingos (Phoenicopterus ruber) resides in Galapagos, which is thought to share an historical origin with the American Flamingo currently found in the Caribbean region. Genetic and phenotypic parameters in American Flamingos from Galapagos and from the Caribbean were investigated. Microsatellite and microchondrial DNA markers data showed that the American Flamingo population in Galapagos differs genetically from that in the Caribbean. American Flamingos in Galapagos form a clade which differs by a single common nucleotide substitution from American Flamingos in the Caribbean. The genetic differentiation is also evident from nuclear DNA in that microsatellite data reveal a number of private alleles for the American Flamingo in Galapagos. Analysis of skeletal measurements showed that American Flamingos in Galapagos are smaller than those in the Caribbean primarily due to shorter tarsus length, and differences in body shape sexual dimorphism. American Flamingo eggs from Galapagos have smaller linear dimensions and volumes than those from the Caribbean. The findings are consistent with reproductive isolation of American Flamingo population in Galapagos.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The work presented in this report is aimed to implement a cost-effective offline mission path planner for aerial inspection tasks of large linear infrastructures. Like most real-world optimisation problems, mission path planning involves a number of objectives which ideally should be minimised simultaneously. Understandably, the objectives of a practical optimisation problem are conflicting each other and the minimisation of one of them necessarily implies the impossibility to minimise the other ones. This leads to the need to find a set of optimal solutions for the problem; once such a set of available options is produced, the mission planning problem is reduced to a decision making problem for the mission specialists, who will choose the solution which best fit the requirements of the mission. The goal of this work is then to develop a Multi-Objective optimisation tool able to provide the mission specialists a set of optimal solutions for the inspection task amongst which the final trajectory will be chosen, given the environment data, the mission requirements and the definition of the objectives to minimise. All the possible optimal solutions of a Multi-Objective optimisation problem are said to form the Pareto-optimal front of the problem. For any of the Pareto-optimal solutions, it is impossible to improve one objective without worsening at least another one. Amongst a set of Pareto-optimal solutions, no solution is absolutely better than another and the final choice must be a trade-off of the objectives of the problem. Multi-Objective Evolutionary Algorithms (MOEAs) are recognised to be a convenient method for exploring the Pareto-optimal front of Multi-Objective optimization problems. Their efficiency is due to their parallelism architecture which allows to find several optimal solutions at each time