382 resultados para Bronchoalveolar lavage


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A asma é uma doença inflamatória crônica caracterizada por hiper-reatividade das vias aéreas, acúmulo de eosinófilos, secreção de muco e remodelamento. No decorrer do estabelecimento do processo inflamatório, há liberação de mediadores endógenos que atuam limitando a evolução do quadro patológico e garantindo a manutenção da homeostasia (COHN, ELIAS e CHUPP, 2004). Dentre estes recebem destaque os hormônios glicocorticóides, reconhecidos por sua atividade anti-inflamatória, dependente, em parte, da geração de fatores intermediários como a proteína anexina-1 (AnxA1) (KAMAL, FLOWER e PERRETTI, 2005; PERRETTI, 2003). Neste estudo investigou-se o papel regulatório da AnxA1 e do peptídeo derivado Ac2-26 (50 - 200 g/animal) no modelo experimental de asma alérgica murina. Camundongos BALB/c (AnxA1+/+) e depletados do gene codificante para AnxA1 (AnxA1-/-) foram sensibilizados com ovoalbumina (OVA 50 g) e hidróxido de alumínio (5 mg), por via subcutânea. Após 14 dias, foi feito reforço com OVA (25 g), por via intraperitoneal, e nos dias 19, 20 e 21 foram desafiados com OVA (25 g), por via intranasal. O tratamento consistiu na administração intranasal do peptídeo Ac2-26 (50 - 200 g), 1 h antes de cada desafio. As análises foram feitas 24 h após o último desafio e incluíram: i) função pulmonar (resistência e elastância) e hiper-reatividade das vias aéreas à metacolina (3 27 mg/ml) através de pletismografia invasiva; ii) alterações morfológicas através de histologia clássica; iii) quantificação de colágeno e iv) quantificação de mediadores inflamatórios através de ELISA. Verificou-se que camundongos AnxA1-/-, quando ativamente sensibilizados e desafiados com OVA apresentaram exacerbação do quadro de hiper-reatividade das vias aéreas, assim como do número de eosinófilos no lavado broncoalveolar e no infiltrado peribrônquico, deposição de colágeno e nos níveis de IL-13 em comparação aos controles AnxA1+/+. Em paralelo, observou-se que o peptídeo Ac2-26 levou a uma redução da hiper-reatividade das vias aéreas frente à estimulação com metacolina nos animais AnxA1+/+. O peptídeo Ac2-26 reduziu o infiltrado inflamatório no parênquima pulmonar e o número de eosinófilos peribronquiolares, além da produção de muco no tecido pulmonar e da geração IL-4, IL-13, eotaxina-1 e -2. Em conjunto, nossos achados mostram que os camundongos AnxA1-/- mostraram-se mais responsivos à estimulação antigênica, o que foi indicativo de que a AnxA1 parece exercer um papel regulatório importante sobre a resposta inflamatória alérgica murina. Além disso, o efeito inibitório do peptídeo Ac2-26 sobre a resposta alérgica pulmonar foi indicativo de que este se coloca como um composto anti-inflamatório e anti-alérgico promissor para utilização na terapia da asma.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Silicose é uma doença pulmonar causada pela inalação de partículas de sílica, na qual vários são os mediadores inflamatórios implicados. Neste estudo investigamos o envolvimento do óxido nítrico (NO) nas alterações de função pulmonar e hiper-reatividade das vias aéreas, em camundongos estimulados com sílica por via intranasal. Foram analisados parâmetros como i) função pulmonar (resistência e elastância) e hiper-reatividade das vias aéreas ao aerossol com metacolina (3 27 mg/mL) através de sistema de pletismografia invasiva, e ii) alterações morfológicas, mediante técnicas clássicas de histologia e imuno-histoquímica. Verificamos que a instilação de partículas de sílica (10 mg) causou aumento nos níveis basais de resistência e elastância pulmonar, bem como de hiper-reatividade das vias aéreas à metacolina, em tempos que variaram de 2 a 28 dias. Observamos uma correlação temporal com as alterações morfológicas no tecido pulmonar, que refletiram presença de resposta inflamatória e infiltrado celular intenso, seguidos de progressiva fibrose e formação de granulomas. Os tempos de 7 e 28 dias pós-estimulação com sílica foram selecionados para os ensaios subsequentes, por corresponderem às fases aguda e crônica da silicose experimental, respectivamente. Foram detectados níveis elevados de óxido nítrico (NO), bem como de peroxinitrito/expressão da enzima iNOS no lavado broncoalveolar e no tecido pulmonar de camundongos estimulados com sílica, respectivamente. Em outro grupo de experimentos, observamos que camundongos depletados para o gene codificante para a enzima NOS induzida (iNOS) apresentaram abolidas as respostas de aumento nos níveis basais de resistência e elastância pulmonares, bem como da hiper-reatividade das vias aéreas à metacolina em comparação aos animais selvagens (C57BL/6). A inibição da resposta inflamatória e fibrótica granulomatosa foi também notada no caso dos animais nocautes para iNOS. O tratamento com 1400W, um inibidor da enzima iNOS, diminui de forma marcada as alterações de função pulmonar e fibrose tecidual verificadas nos camundongos silicóticos. Em conclusão, nossos resultados mostram que o comprometimento da função pulmonar, representado pelo aumento na resistência/elastância e hiper-reatividade das vias aéreas, mostraram-se correlacionados à maior geração de NO e de peroxinitrito, assim como da expressão da enzima iNOS. A depleção do gene codificante ou, ainda, o bloqueio da enzima iNOS aboliram a resposta de comprometimento da função pulmonar e fibrose tecidual na silicose experimental. Em conjunto estes achados indicam que o NO parece ser um mediador importante no contexto da silicose, colocando-se como um alvo terapêutico em potencial no tratamento de doenças de caráter fibrótico.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the present study, one- and two-dimensional gel electrophoresis combined with high resolution Fourier transform-ion cyclotron resonance mass spectrometry (FT-ICR MS) have been applied as powerful approaches for the proteome analysis of surfactant proteins SP-A and SP-D, including identification of structurally modified and truncation forms, in bronchoalveolar lavage fluid from patients with cystic fibrosis, chronic bronchitis and pulmonary alveolar proteinosis. Highly sensitive micro preparation techniques were developed for matrix-assisted laser desorption/ionization (MALDI) FT-ICR MS analysis which provided the identification of surfactant proteins at very low levels. Owing to the high resolution, FT-ICR MS was found to provide substantial advantages for the structural identification of surfactant proteins from complex biological matrices with high mass determination accuracy. Several protein bands corresponding to SP-A and SP-D were identified by MALDI-FT-ICR MS after electrophoretic separation by one- and two-dimensional gel electrophoresis, and provided the identification of structural modifications (hydroxy-proline) and degradation products.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We report on a heart-lung transplant recipient who presented with pulmonary tuberculosis (TB) 2.5 months after transplantation and then developed a paradoxical reaction after 4 months of adequate anti-TB treatment. She eventually recovered with anti-TB and high-dose steroid treatments. METHODS: Using sequential bronchoalveolar lavages, we assessed the inflammatory response in the lung and investigated the alveolar immune response against a Mycobacterium tuberculosis antigen. RESULTS: The paradoxical reaction was characterized by a massive infiltration of the alveolar space by M. tuberculosis antigen-specific CD4(+) T cells and by the presence of a CD4(-)CD8(-) T lymphocyte subpopulation bearing phenotypic markers (CD16(+)/56(+)) classically associated with NK cells. CONCLUSION: This case report illustrates that even solid organ transplant recipients receiving intense triple-drug immune suppression may be able to develop a paradoxical reaction during TB treatment. Transplant physicians should be aware of this phenomenon in order to differentiate it from treatment failure.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cryptococcus neoformans is a common life-threatening human fungal pathogen. The size of cryptococcal cells is typically 5 to 10 microm. Cell enlargement was observed in vivo, producing cells up to 100 microm. These morphological changes in cell size affected pathogenicity via reducing phagocytosis by host mononuclear cells, increasing resistance to oxidative and nitrosative stress, and correlated with reduced penetration of the central nervous system. Cell enlargement was stimulated by coinfection with strains of opposite mating type, and ste3aDelta pheromone receptor mutant strains had reduced cell enlargement. Finally, analysis of DNA content in this novel cell type revealed that these enlarged cells were polyploid, uninucleate, and produced daughter cells in vivo. These results describe a novel mechanism by which C. neoformans evades host phagocytosis to allow survival of a subset of the population at early stages of infection. Thus, morphological changes play unique and specialized roles during infection.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Although some asthmatic children seem to recover from their asthma, 30–80% develop asthma again in later life. The underlying risk factors are unknown. The hypothesis for this study was that children with apparently outgrown asthma would have underlying airway inflammation. Nonbronchoscopic bronchoalveolar lavage was performed on normal children (n=35) and children who had wheezed previously (n=35). Eosinophils were raised in the lavage fluid of atopic children who had apparently outgrown asthma (median (interquartile range) 0.36 (0.05–0.74) compared to controls 0.10 (0–0.18), p=0.002). There was no relationship between length of remission and degree of airways eosinophilia. Thus, there is persistent airways inflammation in some children with outgrown asthma and this may be a risk factor for future relapse.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Exhaled nitric oxide has been proposed as a marker for airway inflammation in asthma. The aim of this study was to compare exhaled nitric oxide levels with inflammatory cells and mediators in bronchoalveolar lavage fluid from asthmatic and normal children.

Methods: Children were recruited from elective surgical lists and a non-bronchoscopic bronchoalveolar lavage (BAL) was performed after induction of anaesthesia. Exhaled nitric oxide (parts per billion) was measured by two techniques: tidal breathing and restricted breath.

Results: Median (interquartile range) exhaled nitric oxide measured by restricted breath was increased in asthmatics compared with normal children (24.3 (10.5–66.5) v 9.7 (6.5–16.5), difference between medians 14.6 (95% CI 5.1 to 29.9), p=0.001). In asthmatic children exhaled nitric oxide correlated significantly with percentage eosinophils (r=0.78, p<0.001 (tidal breathing) and r=0.78, p<0.001 (restricted breath)) and with eosinophilic cationic protein (r=0.53, p<0.01 restricted breath)), but not with other inflammatory cells in the BAL fluid. The area under the receiver operator characteristic curves for the prediction of the presence of eosinophilic airways inflammation by exhaled nitric oxide (tidal and restricted) was 0.80 and 0.87, respectively.

Conclusions: Exhaled nitric oxide correlates closely with percentage eosinophils in BAL fluid in asthmatic children and is therefore likely to be a useful non-invasive marker of airway inflammation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Earlier studies in adults have indicated that increased oxidative stress may occur in the blood and airways of asthmatic subjects. Therefore the aim of this study was to compare the concentrations of antioxidants and protein carbonyls in bronchoalveolar lavage fluid of clinically stable atopic asthmatic children (AA, n = 78) with our recently published reference intervals for nonasthmatic children (C, n = 124). Additionally, lipid peroxidation products (malondialdehyde) in bronchoalveolar lavage fluid and several antioxidants in plasma were determined. Bronchoalveolar lavage concentrations (median and interquartile range) of ascorbate [AA: 0.433 (0.294-0.678) versus C: 0.418 (0.253-0.646) micromol/L], urate [AA: 0.585 (0.412-0.996) versus C: 0.511 (0.372-0.687) micromol/L], alpha-tocopherol [AA: 0.025 (0.014-0.031) versus C: 0.017 (0.017-0.260) micromol/L], and oxidized proteins as reflected by protein carbonyls [AA: 1.222 (0.970-1.635) versus C: 1.243 (0.813-1.685) nmol/mg protein] were similar in both groups (p > 0.05 in all cases). The concentration of protein carbonyls correlated significantly with the number of eosinophils, mast cells, and macrophages in AA children only. Concentrations of oxidized proteins and lipid peroxidation products (malondialdehyde) correlated significantly in AA children (r = 0.614, n = 11, p = 0.044). Serum concentrations of ascorbate, urate, retinol, alpha-tocopherol, beta-carotene, and lycopene were similar in both groups whereas alpha-carotene was significantly reduced in asthmatics. Overall, increased bronchoalveolar lavage eosinophils indicate ongoing airway inflammation, which may increase oxidatively modified proteins as reflected by increased protein carbonyl concentrations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background Childhood asthma is characterized by inflammation of the airways. Structural changes of the airway wall may also be seen in some children early in the course of the disease. Matrix metalloproteinases (MMPs) are key mediators in the metabolism of the extracellular matrix (ECM). Objective To investigate the balance of MMP-8, MMP-9 and tissue inhibitor of metalloproteinases (TIMP)-1 in the airways of children with asthma. Methods One hundred and twenty-four children undergoing elective surgical procedures also underwent non-bronchoscopic bronchoalveolar lavage (BAL). MMP-8, MMP-9 and TIMP-1 were measured by ELISA. Results There was a significant reduction in MMP-9 in atopic asthmatic children (n=31) compared with normal children (n=30) [median difference: 0.57 ng/mL (95% confidence interval: 0.18–1.1 ng/mL)]. The ratio of MMP-9 to TIMP-1 was also reduced in asthmatic children. Levels of all three proteins were significantly correlated to each other and to the relative proportions of particular inflammatory cells in BAL fluid (BALF). Both MMP-8 and MMP-9 were moderately strongly correlated to the percentage neutrophil count (r=0.40 and 0.47, respectively, P

Relevância:

60.00% 60.00%

Publicador:

Resumo:

OBJECTIVE: To investigate the role of recombinant bactericidal/permeability-increasing protein (rBPI21) in the attenuation of the sepsis syndrome and acute lung injury associated with lower limb ischemia-reperfusion (I/R) injury. SUMMARY BACKGROUND DATA: Gut-derived endotoxin has been implicated in the conversion of the sterile inflammatory response to a lethal sepsis syndrome after lower torso I/R injury. rBPI21 is a novel antiendotoxin therapy with proven benefit in sepsis. METHODS: Anesthetized ventilated swine underwent midline laparotomy and bilateral external iliac artery occlusion for 2 hours followed by 2.5 hours of reperfusion. Two groups (n = 6 per group) were randomized to receive, by intravenous infusion over 30 minutes, at the start of reperfusion, either thaumatin, a control-protein preparation, at 2 mg/kg body weight, or rBPI21 at 2 mg/kg body weight. A control group (n = 6) underwent laparotomy without further treatment and was administered thaumatin at 2 mg/kg body weight after 2 hours of anesthesia. Blood from a carotid artery cannula was taken every half-hour for arterial blood gas analysis. Plasma was separated and stored at -70 degrees C for later determination of plasma tumor necrosis factor (TNF)-alpha, interleukin (IL)-6 by bioassay, and IL-8 by enzyme-linked immunosorbent assay (ELISA), as a markers of systemic inflammation. Plasma endotoxin concentration was measured using ELISA. Lung tissue wet-to-dry weight ratio and myeloperoxidase concentration were used as markers of edema and neutrophil sequestration, respectively. Bronchoalveolar lavage protein concentration was measured by the bicinclinoic acid method as a measure of capillary-alveolar protein leak. The alveolar-arterial gradient was measured; a large gradient indicated impaired oxygen transport and hence lung injury. RESULTS: Bilateral hind limb I/R injury increased significantly intestinal mucosal acidosis, intestinal permeability, portal endotoxemia, plasma IL-6 concentrations, circulating phagocytic cell priming and pulmonary leukosequestration, edema, capillary-alveolar protein leak, and impaired gas exchange. Conversely, pigs treated with rBPI21 2 mg/kg at the onset of reperfusion had significantly reduced intestinal mucosal acidosis, portal endotoxin concentrations, and circulating phagocytic cell priming and had significantly less pulmonary edema, leukosequestration, and respiratory failure. CONCLUSIONS: Endotoxin transmigration across a hyperpermeable gut barrier, phagocytic cell priming, and cytokinemia are key events of I/R injury, sepsis, and pulmonary dysfunction. This study shows that rBPI21 ameliorates these adverse effects and may provide a novel therapeutic approach for prevention of I/R-associated sepsis syndrome.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

beta-Defensins are antimicrobial peptides that contribute to the innate immune responses of eukaryotes. At least three defensins, human beta-defensins 1, 2, and 3 (HBD-1, -2, and -3), are produced by epithelial cells lining the respiratory tract and are active toward Gram-positive (HBD-3) and Gram-negative (HBD-1, -2, and -3) bacteria. It has been postulated that the antimicrobial activity of defensins is compromised by changes in airway surface liquid composition in lungs of patients with cystic fibrosis (CF), therefore contributing to the bacterial colonization of the lung by Pseudomonas and other bacteria in CF. In this report we demonstrate that HBD-2 and HBD-3 are susceptible to degradation and inactivation by the cysteine proteases cathepsins B, L, and S. In addition, we show that all three cathepsins are present and active in CF bronchoalveolar lavage. Incubation of HBD-2 and -3 with CF bronchoalveolar lavage leads to their degradation, which can be completely (HBD-2) or partially (HBD-3) inhibited by a cathepsin inhibitor. These results suggest that beta-defensins are susceptible to degradation and inactivation by host proteases, which may be important in the regulation of beta-defensin activity. In chronic lung diseases associated with infection, overexpression of cathepsins may lead to increased degradation of HBD-2 and -3, thereby favoring bacterial infection and colonization.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Rationale: Pulmonary infection in cystic ?brosis (CF) is polymicrobial and it is possible that anaerobic bacteria, not detected by routine aerobic culture methods, reside within infected anaerobic airway
mucus.
Objectives: To determine whether anaerobic bacteria are present in the sputum of patients with CF.
Methods: Sputum samples were collected from clinically stable adults with CF and bronchoalveolar lavage ?uid (BALF) samples from children with CF. Induced sputum samples were collected from healthy volunteers who did not have CF. All samples were processed using anaerobic bacteriologic techniques and bacteria within the samples were quanti?ed and identi?ed.
Measurements and Main Results: Anaerobic species primarily within the genera Prevotella,Veillonella, Propionibacterium, andActinomyces were isolated in high numbers from 42 of 66 (64%) sputum samples from adult patients with CF. Colonization with Pseudomonas aeruginosa signi?cantly increased the likelihood that anaerobic bacteria would be present in the sputum. Similar anaerobic species were identi?ed in BALF from pediatric patients with CF. Although anaerobes were detected in induced sputum samples from 16 of 20 volunteers, they were present in much lower numbers and were
generally different species compared with those detected in CF sputum. Species-dependent differences in the susceptibility of the anaerobes to antibiotics with known activity against anaerobes were apparent with all isolates susceptible to meropenem.
Conclusions: A range of anaerobic species are present in large numbers in the lungs of patients with CF. If these anaerobic bacteria are contributing signi?cantly to infection and in?ammation in the CF
lung, informed alterations to antibiotic treatment to target anaerobes, in addition to the primary infecting pathogens, may improve management.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Neutrophil elastase (NE) activity is increased in lung diseases such as a1-antitrypsin (A1AT) deficiency and pneumonia. It has recently been shown to induce expression of cathepsin B and matrix metalloprotease 2 (MMP-2) in vitro and in a mouse model. It is postulated that increased cathepsin B and MMP-2 in acute and chronic lung diseases result from high levels of extracellular NE and that expression of these proteases could be inhibited by A1AT augmentation therapy.

Methods: Cathepsin and MMP activities were assessed in bronchoalveolar lavage (BAL) fluid from patients with A1AT deficiency, pneumonia and control subjects. Macrophages were exposed to BAL fluid rich in free NE from patients with pneumonia following pretreatment with A1AT. MMP-2, cathepsin B, secretory leucoprotease inhibitor (SLPI) and lactoferrin levels were determined in BAL fluid from A1AT-deficient patients before and after aerosolisation of A1AT.

Results: BAL fluid from both patients with pneumonia and those with A1AT deficiency containing free NE had increased cathepsin B and MMP-2 activities compared with BAL fluid from healthy volunteers. The addition of A1AT to BAL fluid from patients with pneumonia greatly reduced NE-induced cathepsin B and MMP-2 expression in macrophages in vitro. A1AT augmentation therapy to A1AT-deficient individuals also reduced cathepsin B and MMP-2 activity in BAL fluid in vivo. Furthermore, A1AT-deficient patients had higher levels of SLPI and lactoferrin after A1AT augmentation therapy.

Conclusion: These findings suggest a novel role for A1AT inhibition of NE-induced upregulation of MMP and cathepsin expression both in vitro and in vivo.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Neutrophil Elastase (NE) is a pro-inflammatory protease present at higher than normal levels in the lung during inflammatory disease. NE regulates IL-8 production from airway epithelial cells and can activate both EGFR and TLR4. TACE/ADAM17 has been reported to trans-activate EGFR in response to NE. Here, using 16HBE14o-human bronchial epithelial cells we demonstrate a new mechanism by which NE regulates both of these events. A high molecular weight soluble metalloprotease activity detectable only in supernatants from NE-treated cells by gelatin and casein zymography was confirmed to be meprin alpha by Western immunoblotting. In vitro studies demonstrated the ability of NE to activate meprin alpha, which in turn could release soluble TGFa and induce IL-8 production from 16HBE14o- cells. These effects were abrogated by actinonin, a specific meprin inhibitor. NE-induced IL-8 expression was also inhibited by meprin alpha siRNA. Immunoprecipitation studies detected EGFR/TLR4 complexes in NE-stimulated cells overexpressing these receptors. Confocal studies confirmed colocalization of EGFR and TLR4 in 16HBE14o- cells stimulated with meprin alpha. NF?B was also activated via MyD88 in these cells by meprin alpha. In bronchoalveolar lavage fluid from NE knock-out mice infected intra-tracheally with Pseudomonas aeruginosa meprin alpha was significantly decreased compared with control mice, and was significantly increased and correlated with NE activity, in bronchoalveolar lavage fluid from individuals with cystic fibrosis but not healthy controls. The data describe a previously unidentified lung metalloprotease meprin alpha, and its role in NE-induced EGFR and TLR4 activation and IL-8 production.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Adenosine is a ubiquitous molecule present in every cell of the human body. It has a wide range of physiological functions mediated predominantly through specific cell surface adenosine receptors. Adenosine has both pro- and anti-inflammatory effects and acts on inflammatory and resident immune cells and antioxidant enzymes. The elevation of adenosine in the bronchoalveolar lavage (BAL) fluid of asthmatics combined with its bronchoconstrictor effect on the airways in asthmatics has led to increased research into the contribution of adenosine in the pathophysiology of inflammation and asthma. This review looks at the airway response to adenosine and at the interaction of adenosine with mast cells and basophils.