751 resultados para haplotype


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mature female sperm whales (Physeter macrocephalus) live in socially cohesive groups of 10-30, which include immature animals of both sexes, and within which there is communal care of the young. We examined kinship in such groups using analyses of microsatellite DNA, mitochondrial DNA sequence, and sex-linked markers on samples of sloughed skin collected noninvasively from animals in three groups off the coast of Ecuador. Social groups were defined through photographic identification of individuals. Each group contained about 26 members, mostly female (79%). Relatedness was greater within groups, as compared to between groups. Particular mitochondrial haplotypes were characteristic of groups, but all groups contained more than one haplotype. The data are generally consistent with each group being comprised of several matrillines from which males disperse at about the age of 6 years. There are indications of paternal relatedness among grouped individuals with different mitochondrial haplotypes, suggesting long-term associations between different matrilines.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Heat shock protein gp96 primes class I restricted cytotoxic T cells against antigens present in the cells from which it was isolated. Moreover, gp96 derived from certain tumors functions as an effective vaccine, causing complete tumor regressions in in vivo tumor challenge protocols. Because tumor-derived gp96 did not differ from gp96 isolated from normal tissues, a role for gp96 as a peptide carrier has been proposed. To test this hypothesis, we analyzed whether such an association of antigenic peptides with gp96 occurs in a well-defined viral model system. Here we present the full characterization of an antigenic peptide that endogenously associates with the stress protein gp96 in cells infected with vesicular stomatitis virus (VSV). This peptide is identical to the immunodominant peptide of VSV, which is also naturally presented by H-2Kb major histocompatibility complex class I molecules. This peptide associates with gp96 in VSV-infected cells regardless of the major histocompatibility com- plex haplotype of the cell. Our observations provide a biochemical basis for the vaccine function of gp96.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A polymorphic C-->T transition located on the human Y chromosome was found by the systematic comparative sequencing of Y-specific sequence-tagged sites by denaturing high-performance liquid chromatography. The results of genotyping representative global indigenous populations indicate that the locus is polymorphic exclusively within the Western Hemisphere. The pre-Columbian T allele occurs at > 90% frequency within the native South and Central American populations examined, while its occurrence in North America is approximately 50%. Concomitant genotyping at the polymorphic tetranucleotide microsatellite DYS19 locus revealed that the C-->T mutation displayed significant linkage disequilibrium with the 186-bp allele. The data suggest a single origin of linguistically diverse native Americans with subsequent haplotype differentiation within radiating indigenous populations as well as post-Columbian European and African gene flow. The mutation may have originated either in North America at a very early time during the expansion or before it, in the ancestral population(s) from which all Americans may have originated. The analysis of linkage of the DYS199 and the DYS19 tetranucleotide loci suggests that the C-->T mutation may have occurred around 30,000 years ago. We estimate the nucleotide diversity over 4.2 kb of the nonrecombining portion of the Y chromosome to be 0.00014. compared to autosomes, the majority of variation is due to the smaller effective population size of the Y chromosome rather than selective sweeps. There begins to emerge a pattern of pronounced geographical localization of Y-specific nucleotide substitution polymorphisms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present an analysis that synthesizes information on the sequence, structure, and motifs of antigenic peptides, which previously appeared to be in conflict. Fourier analysis of T-cell antigenic peptides indicates a periodic variation in amino acid polarities of 3-3.6 residues per period, suggesting an amphipathic alpha-helical structure. However, the diffraction patterns of major histocompatibility complex (MHC) molecules indicate that their ligands are in an extended non-alpha-helical conformation. We present two mutually consistent structural explanations for the source of the alpha-helical periodicity, based on an observation that the side chains of MHC-bound peptides generally partition with hydrophobic (hydrophilic) side chains pointing into (out of) the cleft. First, an analysis of haplotype-dependent peptide motifs indicates that the locations of their defining residues tend to force a period 3-4 variation in hydrophobicity along the peptide sequence, in a manner consistent with the spacing of pockets in the MHC. Second, recent crystallographic determination of the structure of a peptide bound to a class II MHC molecule reveals an extended but regularly twisted peptide with a rotation angle of about 130 degrees. We show that similar structures with rotation angles of 100-130 degrees are energetically acceptable and also span the length of the MHC cleft. These results provide a sound physical chemical and structural basis for the existence of a haplotype-independent antigenic motif which can be particularly important in limiting the search time for antigenic peptides.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We screened a panel of monoclonal antibodies against selected macrophage cell surface molecules for their ability to inhibit enterotoxin binding to major histocompatibility complex class II-negative C2D (H-2b) macrophages. Two monoclonal antibodies, HB36 and TIB126, that are specific for the alpha 2 domain of major histocompatibility complex class I, blocked staphylococcal enterotoxins A and B (SEA and SEB, respectively) binding to C2D macrophages in a specific and concentration-dependent manner. Inhibitory activities were haplotype-specific in that SEA and SEB binding to H-2k or H-2d macrophages was not inhibited by either monoclonal antibody. HB36, but not TIB126, inhibited enterotoxin-induced secretion of cytokines by H-2b macrophages. Lastly, passive protection of D-galactosamine-sensitized C2D mice by injection with HB36 antibody prevented SEB-induced death. Therefore, SEA and SEB binding to the alpha 2 domain of the H-2Db molecule induces biological activity and has physiological consequences.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Survival, T-cell functions, and postmortem histopathology were studied in H-2 congenic strains of mice bearing H-2b, H-2k, and H-2d haplotypes. Males lived longer than females in all homozygous and heterozygous combinations except for H-2d homozygotes, which showed no differences between males and females. Association of heterozygosity with longer survival was observed only with H-2b/H-2b and H-2b/H-2d mice. Analysis using classification and regression trees (CART) showed that both males and females of H-2b homozygous and H-2k/H-2b mice had the shortest life-span of the strains studied. In histopathological analyses, lymphomas were noted to be more frequent in females, while hemangiosarcomas and hepatomas were more frequent in males. Lymphomas appeared earlier than hepatomas or hemangiosarcomas. The incidence of lymphomas was associated with the H-2 haplotype--e.g., H-2b homozygous mice had more lymphomas than did mice of the H-2d haplotype. More vigorous T-cell function was maintained with age (27 months) in H-2d, H-2b/H-2d, and H-2d/H-2k mice as compared with H-2b, H-2k, and H-2b/H-2k mice, which showed a decline of T-cell responses with age.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aim: High gamma diversity in tropical montane forests may be ascribed to high geographical turnover of community composition, resulting from population isolation that leads to speciation. We studied the evolutionary processes responsible for diversity and turnover in assemblages of tropical scarab beetles (Scarabaeidae) by assessing DNA sequence variation at multiple hierarchical levels. Location: A 300-km transect across six montane forests (900–1100 m) in Costa Rica. Methods: Assemblages of Scarabaeidae (subfamilies Dynastinae, Rutelinae, Melolonthinae) including 118 morphospecies and > 500 individuals were sequenced for the cox1 gene to establish species limits with a mixed Yule–coalescent method. A species-level phylogenetic tree was constructed from cox1 and rrnL genes. Total diversity and turnover among assemblages were then assessed at three hierarchical levels: haplotypes, species and higher clades. Results: DNA-based analyses showed high turnover among communities at all hierarchical levels. Turnover was highest at the haplotype level (community similarity 0.02–0.12) and decreased with each step of the hierarchy (species: 0.21–0.46; clades: 0.41–0.43). Both compositional and phylogenetic similarities of communities were geographically structured, but turnover was not correlated with distance among forests. When three major clades were investigated separately, communities of Dynastinae showed consistently higher alpha diversity, larger species ranges and lower turnover than Rutelinae and Melolonthinae. Main conclusions: Scarab communities of montane forests show evidence of evolutionary persistence of communities in relative isolation, presumably tracking suitable habitats elevationally to accommodate climatic changes. Patterns of diversity on all hierarchical levels seem to be determined by restricted dispersal, and differences in Dynastinae could be explained by their greater dispersal ability. Community-wide DNA sequencing across multiple lineages and hierarchical levels reveals the evolutionary processes that led to high beta diversity in tropical montane forests through time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A classic T-cell phenotype in systemic lupus erythematosus (SLE) is the downregulation and replacement of the CD3ζ chain that alters T-cell receptor signaling. However, genetic associations with SLE in the human CD247 locus that encodes CD3ζ are not well established and require replication in independent cohorts. Our aim was therefore to examine, localize and validate CD247-SLE association in a large multiethnic population. We typed 44 contiguous CD247 single-nucleotide polymorphisms (SNPs) in 8922 SLE patients and 8077 controls from four ethnically distinct populations. The strongest associations were found in the Asian population (11 SNPs in intron 1, 4.99 × 10(-4) < P < 4.15 × 10(-2)), where we further identified a five-marker haplotype (rs12141731-rs2949655-rs16859085-rs12144621-rs858554; G-G-A-G-A; P(hap) = 2.12 × 10(-5)) that exceeded the most associated single SNP rs858554 (minor allele frequency in controls = 13%; P = 4.99 × 10(-4), odds ratio = 1.32) in significance. Imputation and subsequent association analysis showed evidence of association (P < 0.05) at 27 additional SNPs within intron 1. Cross-ethnic meta-analysis, assuming an additive genetic model adjusted for population proportions, showed five SNPs with significant P-values (1.40 × 10(-3) < P< 3.97 × 10(-2)), with one (rs704848) remaining significant after Bonferroni correction (P(meta) = 2.66 × 10(-2)). Our study independently confirms and extends the association of SLE with CD247, which is shared by various autoimmune disorders and supports a common T-cell-mediated mechanism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND Canine atopic dermatitis (CAD) is a chronic inflammatory skin disease triggered by allergic reactions involving IgE antibodies directed towards environmental allergens. We previously identified a ~1.5 Mb locus on canine chromosome 27 associated with CAD in German shepherd dogs (GSDs). Fine-mapping indicated association closest to the PKP2 gene encoding plakophilin 2. RESULTS Additional genotyping and association analyses in GSDs combined with control dogs from five breeds with low-risk for CAD revealed the top SNP 27:19,086,778 (p = 1.4 × 10(-7)) and a rare ~48 kb risk haplotype overlapping the PKP2 gene and shared only with other high-risk CAD breeds. We selected altogether nine SNPs (four top-associated in GSDs and five within the ~48 kb risk haplotype) that spanned ~280 kb forming one risk haplotype carried by 35 % of the GSD cases and 10 % of the GSD controls (OR = 5.1, p = 5.9 × 10(-5)), and another haplotype present in 85 % of the GSD cases and 98 % of the GSD controls and conferring a protective effect against CAD in GSDs (OR = 0.14, p = 0.0032). Eight of these SNPs were analyzed for transcriptional regulation using reporter assays where all tested regions exerted regulatory effects on transcription in epithelial and/or immune cell lines, and seven SNPs showed allelic differences. The DNA fragment with the top-associated SNP 27:19,086,778 displayed the highest activity in keratinocytes with 11-fold induction of transcription by the risk allele versus 8-fold by the control allele (pdifference = 0.003), and also mapped close (~3 kb) to an ENCODE skin-specific enhancer region. CONCLUSIONS Our experiments indicate that multiple CAD-associated genetic variants located in cell type-specific enhancers are involved in gene regulation in different cells and tissues. No single causative variant alone, but rather multiple variants combined in a risk haplotype likely contribute to an altered expression of the PKP2 gene, and possibly nearby genes, in immune and epithelial cells, and predispose GSDs to CAD.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present evidence of complex balancing regulation of HTR1B transcription by common polymorphisms in its promoter. Computational analysis of the HTR1B gene predicted that a 50 segment, spanning common DNA sequence variations, T-261G, A-161T, and -182INS/DEL-181, contained a putative functional promoter. Using a secreted alkaline phosphatase (SEAP) reporter gene system, we found that the haplotype -261G_-182INS-181_A-161 enhanced transcriptional activity 2.3-fold compared with the haplotype T-261_-182INS-181_A-161. Conversely, -161T reversed this, and the net effect when -261G and -161T were in the same haplotype (-261G_-182INS-181_-161T) was equivalent to the major haplotype (T-261_-182INS-181_A-161). Electrophoretic mobility shift experiments showed that -261G and -161T modify the binding of transcription factors (TFs): -261G generates a new AP2 binding site, while alleles A-161 and -161T exhibit different binding characteristics to AP1. T-261G and A-161T were found to be in linkage disequilibrium (LD) with G861C in a European ancestry population. Interestingly, G861C has been reported to be associated with several psychiatric disorders. Our results indicate that HTR1B is the target of substantial transcriptional genetic regulation by common haplotypes, which are in LD with the HTR1B single-nucleotide polymorphism (SNP) most commonly used in association studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report a method using variation in the chloroplast genome (cpDNA) to test whether oak stands of unknown provenance are of native and/or local origin. As an example, a sample of test oaks, of mostly unknown status in relation to nativeness and localness, were surveyed for cpDNA type. The sample comprised 126 selected trees, derived from 16 British seed stands, and 75 trees, selected for their superior phenotype (201 tree samples in total). To establish whether these two test groups are native and local, their cpDNA type was compared with that of material from known autochthonous origin (results of a previous study which examined variation in 1076 trees from 224 populations distributed across Great Britain). In the previous survey of autochthonous material, four cpDNA types were identified as native; thus if a test sample possessed a new haplotype then it could be classed as non-native. Every one of the 201 test samples possessed one of the four cpDNA types found within the autochthonous sample. Therefore none could be proven to be introduced and, on this basis, was considered likely to be native. The previous study of autochthonous material also found that cpDNA variation was highly structured geographically and, therefore, if the cpDNA type of the test sample did not match that of neighbouring autochthonous trees then it could be considered to be non-local. A high proportion of the seed stand group (44.2 per cent) and the phenotypically superior trees (58.7 per cent) possessed a cpDNA haplotype which matched that of the neighbouring autochthonous trees and, therefore, can be considered as local, or at least cannot be proven to be introduced. The remainder of the test sample could be divided into those which did not grow in an area of overall dominance (18.7 per cent of seed stand trees and 28 per cent of phenotypically superior) and those which failed to match the neighbouring autochthonous haplotype (37.1 per cent and 13.3 per cent, respectively). Most of the non-matching test samples were located within 50 km of an area dominated by a matching autochthonous haplotype (96.0 per cent and 93.5 per cent, respectively), and potentially indicates only local transfer. Whilst such genetic fingerprinting tests have proven useful for assessing the origin of stands of unknown provenance, there are potential limitations to using a marker from the chloroplast genome (mostly adaptively neutral) for classifying seed material into categories which have adaptive implications. These limitations are discussed, particularly within the context of selecting adaptively superior material for restocking native forests.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A simulation-based modelling approach is used to examine the effects of stratified seed dispersal (representing the distribution of the majority of dispersal around the maternal parent and also rare long-distance dispersal) on the genetic structure of maternally inherited genomes and the colonization rate of expanding plant populations. The model is parameterized to approximate postglacial oak colonization in the UK, but is relevant to plant populations that exhibit stratified seed dispersal. The modelling approach considers the colonization of individual plants over a large area (three 500 km x 10 km rolled transects are used to approximate a 500 km x 300 km area). Our approach shows how the interaction of plant population dynamics with stratified dispersal can result in a spatially patchy haplotype structure. We show that while both colonization speeds and the resulting genetic structure are influenced by the characteristics of the dispersal kernel, they are robust to changes in the periodicity of long-distance events, provided the average number of long-distance dispersal events remains constant. We also consider the effects of additional physical and environmental mechanisms on plant colonization. Results show significant changes in genetic structure when the initial colonization of different haplotypes is staggered over time and when a barrier to colonization is introduced. Environmental influences on survivorship and fecundity affect both the genetic structure and the speed of colonization. The importance of these mechanisms in relation to the postglacial spread and genetic structure of oak in the UK is discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A primary haplotype (H1) of the microtubule-associated protein Tau (MAPT) gene is associated with Parkinson's disease (PD). However, the mechanism for disease susceptibility remains unknown. We examined the promoter region of MAPT and identified single nucleotide polymorphisms and insertions of 1 to 11 nucleotides. These polymorphisms corresponded to the previously characterized haplotypes, H1 and H2, as well as a novel variant of the H1 haplotype, H1'. As observed in other studies, we demonstrated a significant association with the H1/H1 promoter genotype and PD in a cohort of 206 idiopathic late-onset cases. This is in contrast with a panel of 13 early-onset PD patients, for whom we did not detect any mutations in MAPT. By examining single nucleotide polymorphisms in adjacent genes, we showed that linkage disequilibrium does not extend beyond the MAPT haplotype to neighboring genes. To define the mechanism of disease susceptibility, we examined the transcriptional activity of the promoter haplotypes using a luciferase reporter assay. We demonstrated in two human cell lines, SK-N-MC and 293, that the H1 haplotype was more efficient at driving gene expression than the H2 haplotype. Our data suggest that an increase in expression of the MAPT gene is a susceptibility factor in idiopathic PD.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Seventy sorghum inbred lines which formed part of the Queensland Department of Primary Industries (QDPI) sorghum breeding program were screened with 104 previously mapped RFLP markers. The lines were related by pedigree and consisted of ancestral source lines, intermediate lines and recent releases from the program. We compared the effect of defining marker alleles using either identity by state (IBS) or identity by descent (IBD) on our capacity to trace markers through the pedigree and detect evidence of selection for particular alleles. Allelic identities defined using IBD were much more sensitive for detecting non-Mendelian segregation in this pedigree. Only one marker allele showed significant evidence of selection when IBS was used compared with ten regions with particular allelic identities when IBD was used. Regions under selection were compared with the location of QTLs for agronomic traits known to be under selection in the breeding program. Only two of the ten regions were associated with known QTLs that matched with knowledge of the agronomic characteristics of the ancestral lines. Some of the other regions were hypothesised to be associated with genes for particular traits based on the properties of the ancestral source lines.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective-To evaluate the haplotype distribution associated with the copper toxicosis gene and the segregation of the mutated allele in a Bedlington Terrier population in Australia. Animals-131 Bedlington Terriers. Procedure-Samples of DNA and RNA were obtained from each dog. Genetic status of each dog was evaluated by use of the DNA markers C04107; single nucleotide polymorphism (SNP), which was adjacent to exon 2 of Murr1; and a deletion marker for exon 2. A subgroup of the study population was evaluated by use of biochemical and histologic techniques to elucidate the correlation between genotype and phenotype. Results-We identified a recombination between the C04107 marker and Murr1 and a variation in a nucleotide in the splice site of exon 2 in our Bedlington Terrier cohort. Furthermore, we identified a novel haplotype associated with copper toxicosis in this cohort. Conclusions and Clinical Relevance-Our findings indicate that the deletion of exon 2 was not the sole cause of copper toxicosis, although only exon 2 deletion of Murr1 has been responsible for copper toxicosis in Bedlington Terriers. Although we failed to find a novel mutation in our cohort, we identified an affected dog family with an intact exon 2. Furthermore, we found that an SNP in the 5' splicing site of exon 2 may or may not be associated with a novel mutation of the Murr1 gene or other genes. Loss of linkage between the C04107 marker and the Murr1 gene was also identified in a certain family of dogs.