695 resultados para purine nucleoside phosphorylase


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reactive oxygen species play a central role in vascular inflammation and atherogenesis, with enhanced superoxide (O2.-) production contributing significantly to impairment of nitric oxide (.NO)-dependent relaxation of vessels from cholesterol-fed rabbits. We investigated potential sources of O2.- production, which contribute to this loss of endothelium-dependent vascular responses. The vasorelaxation elicited by acetylcholine (ACh) in phenylephrine-contracted, aortic ring segments was impaired by cholesterol feeding. Pretreatment of aortic vessels with either heparin, which competes with xanthine oxidase (XO) for binding to sulfated glycosaminoglycans, or the XO inhibitor allopurinol resulted in a partial restoration (36-40% at 1 muM ACh) of ACh-dependent relaxation. Furthermore, O2.(-)-dependent lucigenin chemiluminescence, measured in intact ring segments from hypercholesterolemic rabbits, was decreased by addition of heparin, allopurinol or a chimeric, heparin-binding superoxide dismutase. XO activity was elevated more than two-fold in plasma of hypercholesterolemic rabbits. Incubation of vascular rings from rabbits on a normal diet with purified XO (10 milliunits/ml) also impaired .NO-dependent relaxation but only in the presence of purine substrate. As with vessels from hypercholesterolemic rabbits, this effect was prevented by heparin and allopurinol treatment. We hypothesize that increases in plasma cholesterol induce the release of XO into the circulation, where it binds to endothelial cell glycosaminoglycans. Only in hypercholesterolemic vessels is sufficient substrate available to sustain the production of O2.- and impair NO-dependent vasorelaxation. Chronically, the continued production of peroxynitrite, (ONOO-) which the simultaneous generation of NO and O2.- implies, may irreversibly impair vessel function.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Structures of Watson-Crick base paired 15-nucleobase oligomer strands in A-type or B-type conformation in which one strand [a strand of alternating nucleotide and riboacetal thymidine nucleoside (RT) units, RP] is DNA and the other is composed of alternating nucleotides and riboacetal nucleosides have been studied by molecular mechanics. Analogously, oligomer strands of RNA in place of DNA have been modeled. The calculations indicate that the RP strand is more stable when complexed in an A-type duplex relative to a B-type form and that this conformational preference is presumably due to the more uniform nature of the former. Nearly planar ribose rings were more commonly observed in the minimized structures of the B-type DNA.RP duplexes as compared with A-type duplexes, despite the fact that planar ribofuranose rings are known to be energetically unfavorable in oligonucleotides. Computed relative stabilities of all duplexes containing the RP strand suggest that such heteroduplexes are less stable than the corresponding double-stranded DNA and double-stranded RNA species. These findings are in agreement with experimental results which show, when equivalent sequences were compared, that a DNA.RNA control forms a more stable duplex than RP hound to a complementary single-stranded RNA strand. In contrast, molecular mechanics studies of complementary triple-helical (DNA)2.RP, (DNA)2.DNA, and (DNA)2.RNA structures indicate that the binding of RP as a Hoogsteen strand stabilizes the underlying duplex to a greater extent compared with native oligonucleotides. These calculations suggest that puckering of the ribose ring in the riboacetal linkage leads to a more favorable interaction with a complementary nucleic acid target than the proposed planar geometry and that this puckering may account for the enhanced binding of RP to a double-stranded target.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A human cDNA sequence homologous to human deoxycytidine kinase (dCK; EC 2.7.1.74) was identified in the GenBank sequence data base. The longest open reading frame encoded a protein that was 48% identical to dCK at the amino acid level. The cDNA was expressed in Escherichia coli and shown to encode a protein with the same substrate specificity as described for the mitochondrial deoxyguanosine kinase (dGK; EC 2.7.1.113). The N terminus of the deduced amino acid sequence had properties characteristic for a mitochondrial translocation signal, and cleavage at a putative mitochondrial peptidase cleavage site would give a mature protein size of 28 kDa. Northern blot analysis determined the length of dGK mRNA to 1.3 kbp with no cross-hybridization to the 2.8-kbp dCK mRNA. dGK mRNA was detected in all tissues investigated with the highest expression levels in muscle, brain, liver, and lymphoid tissues. Alignment of the dGK and herpes simplex virus type 1 thymidine kinase amino acid sequences showed that five regions, including the substrate-binding pocket and the ATP-binding glycine loop, were also conserved in dGK. To our knowledge, this is the first report of a cloned mitochondrial nucleoside kinase and the first demonstration of a general sequence homology between two mammalian deoxyribonucleoside kinases. Our findings suggest that dCK and dGK are evolutionarily related, as well as related to the family of herpes virus thymidine kinases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have isolated a new type of ATP-dependent protease from Escherichia coli. It is the product of the heat-shock locus hslVU that encodes two proteins: HslV, a 19-kDa protein similar to proteasome beta subunits, and HslU, a 50-kDa protein related to the ATPase ClpX. In the presence of ATP, the protease hydrolyzes rapidly the fluorogenic peptide Z-Gly-Gly-Leu-AMC and very slowly certain other chymotrypsin substrates. This activity increased 10-fold in E. coli expressing heat-shock proteins constitutively and 100-fold in cells expressing HslV and HslU from a high copy plasmid. Although HslV and HslU could be coimmunoprecipitated from cell extracts of both strains with an anti-HslV antibody, these two components were readily separated by various types of chromatography. ATP stimulated peptidase activity up to 150-fold, whereas other nucleoside triphosphates, a nonhydrolyzable ATP analog, ADP, or AMP had no effect. Peptidase activity was blocked by the anti-HslV antibody and by several types of inhibitors of the eukaryotic proteasome (a threonine protease) but not by inhibitors of other classes of proteases. Unlike eukaryotic proteasomes, the HslVU protease lacked tryptic-like and peptidyl-glutamyl-peptidase activities. Electron micrographs reveal ring-shaped particles similar to en face images of the 20S proteasome or the ClpAP protease. Thus, HslV and HslU appear to form a complex in which ATP hydrolysis by HslU is essential for peptide hydrolysis by the proteasome-like component HslV.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The variable immunoglobulin (Ig) domains contain hypervariable regions that are involved in the formation of the antigen binding site. Besides the canonical antigen binding site, so-called unconventional sites also reside in the variable region that bind bacterial and viral proteins. Docking to these unconventional sites does not typically interfere with antigen binding, which suggests that these sites may be a part of the biological functions of Igs. Herein, a novel unconventional binding site is described. The site is detected with 8-azidopurine nucleotide photoaffinity probes that label antibodies efficiently and under mild conditions. Tryptic peptides were isolated from photolabeled monoclonal antibodies and aligned with the variable antibody domains of heavy and light chains. The structure of a variable Ig fragment was used to model the binding of the purine nucleotide to invariant residues in a hydrophobic pocket of the Ig molecule at a location distant from the antigen binding site. Monoclonal and polyclonal antibodies were biotinylated with the photoaffinity linker and used in fluorescence-activated cell sorter and ELISA analyses. The data support the utility of this site for tethering diagnostic and therapeutic agents to the variable Ig fragment region without impairing the structural and functional integrity of antibodies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Escherichia coli endoribonuclease RNase E is essential for RNA processing and degradation. Earlier work provided evidence that RNase E exists intracellularly as part of a multicomponent complex and that one of the components of this complex is a 3'-to-5' exoribonuclease, polynucleotide phosphorylase (EC 2.7.7.8). To isolate and identify other components of the RNase E complex, FLAG-epitope-tagged RNase E (FLAG-Rne) fusion protein was purified on a monoclonal antibody-conjugated agarose column. The FLAG-Rne fusion protein, eluted by competition with the synthetic FLAG peptide, was found to be associated with other proteins. N-terminal sequencing of these proteins revealed the presence in the RNase E complex not only of polynucleotide phosphorylase but also of DnaK, RNA helicase, and enolase (EC 4.2.1.11). Another protein associated only with epitope-tagged temperature-sensitive (Rne-3071) mutant RNase E but not with the wild-type enzyme is GroEL. The FLAG-Rne complex has RNase E activity in vivo and in vitro. The relative amount of proteins associated with wild-type and Rne-3071 expressed at an elevated temperature differed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present rules that allow one to predict the stability of DNA pyrimidine.purine.pyrimidine (Y.R.Y) triple helices on the basis of the sequence. The rules were derived from van't Hoff analysis of 23 oligonucleotide triplexes tested at a variety of pH values. To predict the enthalpy of triplex formation (delta H degrees), a simple nearest-neighbor model was found to be sufficient. However, to accurately predict the free energy of the triplex (delta G degrees), a combination model consisting of five parameters was needed. These parameters were (i) the delta G degrees for helix initiation, (ii) the delta G degrees for adding a T-A.T triple, (iii) the delta G degrees for adding a C(+)-G.C triple, (iv) the penalty for adjacent C bases, and (v) the pH dependence of the C(+)-G.C triple's stability. The fitted parameters are highly consistent with thermodynamic data from the basis set, generally predicting both delta H degrees and delta G degrees to within the experimental error. Examination of the parameters points out several interesting features. The combination model predicts that C(+) -G.C. triples are much more stabilizing than T-A.T triples below pH 7.0 and that the stability of the former increases approximately equal to 1 kcal/mol per pH unit as the pH is decreased. Surprisingly though, the most stable sequence is predicted to be a CT repeat, as adjacent C bases partially cancel the stability of one another. The parameters successfully predict tm values from other laboratories, with some interesting exceptions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The infectivity and replication of human (HIV-1), feline (FIV), and murine (LP-BM5) immunodeficiency viruses are all inhibited by several nucleoside analogues after intracellular conversion to their triphosphorylated derivatives. At the cellular level, the main problems in the use of these drugs concern their limited phosphorylation in some cells (e.g., macrophages) and the cytotoxic side effects of nucleoside analogue triphosphates. To overcome these limitations a new nucleoside analogue homodinucleotide, di(thymidine-3'-azido-2',3'-dideoxy-D-riboside)-5'-5'-p1-p2-pyrophosphat e (AZTp2AZT), was designed and synthesized. AZTp2AZT was a poor in vitro inhibitor of HIV reverse transcriptase, although it showed antiviral and cytotoxic activities comparable to those of the parent AZT when added to cultures of a HTLV-1 transformed cell line. AZTp2AZT encapsulated into erythrocytes was remarkably stable. Induction of erythrocyte-membrane protein clusterization and subsequent phagocytosis of AZTp2AZT-loaded cells allowed the targeted delivery of this impermeant drug to macrophages where its metabolic activation occurs. The addition of AZTp2AZT-loaded erythrocytes to human, feline, and murine macrophages afforded almost complete in vitro protection of these cells from infection by HIVBa-L, FIV, and LP-BM5, respectively. Therefore, AZTp2AZT, unlike the membrane-diffusing azidothymidine, acts as a very efficient antiretroviral prodrug following selective targeting to macrophages by means of loaded erythrocytes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Herpes simplex virus type 1 (HSV-1) thymidine kinase is currently used as a suicide agent in the gene therapy of cancer. This therapy is based on the preferential phosphorylation of nucleoside analogs by tumor cells expressing HSV-1 thymidine kinase. However, the use of HSV-1 thymidine kinase is limited in part by the toxicity of the nucleoside analogs. We have used random sequence mutagenesis to create new HSV-1 thymidine kinases that, compared with wild-type thymidine kinase, render cells much more sensitive to specific nucleoside analogs. A segment of the HSV-1 thymidine kinase gene at the putative nucleoside binding site was substituted with random nucleotide sequences. Mutant enzymes that demonstrate preferential phosphorylation of the nucleoside analogs, ganciclovir or acyclovir, were selected from more than one million Escherichia coli transformants. Among the 426 active mutants we have isolated, 26 demonstrated enhanced sensitivity to ganciclovir, and 54 were more sensitive to acyclovir. Only 6 mutant enzymes displayed sensitivity to both ganciclovir and acyclovir when expressed in E. coli. Analysis of 3 drug-sensitive enzymes demonstrated that 1 produced stable mammalian cell transfectants that are 43-fold more sensitive to ganciclovir and 20-fold more sensitive to acyclovir.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The intron of the corticotropin-releasing hormone (corticoliberin; CRH) gene contains a sequence of over 100 bp of alternating purine/pyrimidine residues. We have used binding of a Z-DNA-specific antibody in metabolically active, permeabilized nuclei to study the formation of Z-DNA in this sequence at various levels of transcription. In the NPLC human primary liver carcinoma cell line, activation of cAMP-dependent pathways increased the level of transcription, while adding glucocorticoids inhibited transcription of the CRH gene. These cells respond in a manner similar to hypothalamic cells. Z-DNA formation in this sequence was detected at the basal level of transcription, as well as after stimulation with forskolin. Inhibition of transcription by dexamethasone abolished Z-DNA formation. Z-DNA formation in the WC gene (c-myc) was affected differently in the same experiment. Thus, changes in Z-DNA formation in the CRH gene are gene specific and are linked to the transcription of the gene.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have devised a combinatorial method, restriction endonuclease protection selection and amplification (REPSA), to identify consensus ligand binding sequences in DNA. In this technique, cleavage by a type IIS restriction endonuclease (an enzyme that cleaves DNA at a site distal from its recognition sequence) is prevented by a bound ligand while unbound DNA is cleaved. Since the selection step of REPSA is performed in solution under mild conditions, this approach is amenable to the investigation of ligand-DNA complexes that are either insufficiently stable or not readily separable by other methods. Here we report the use of REPSA to identify the consensus duplex DNA sequence recognized by a G/T-rich oligodeoxyribonucleotide under conditions favoring purine-motif triple-helix formation. Analysis of 47 sequences indicated that recognition between 13 bases on the oligonucleotide 3' end and the duplex DNA was sufficient for triplex formation and indicated the possible existence of a new base triplet, G.AT. This information should help identify appropriate target sequences for purine-motif triplex formation and demonstrates the power of REPSA for investigating ligand-DNA interactions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Adenosine kinase catalyzes the phosphorylation of adenosine to AMP and hence is a potentially important regulator of extracellular adenosine concentrations. Despite extensive characterization of the kinetic properties of the enzyme, its primary structure has never been elucidated. Full-length cDNA clones encoding catalytically active adenosine kinase were obtained from lymphocyte, placental, and liver cDNA libraries. Corresponding mRNA species of 1.3 and 1.8 kb were noted on Northern blots of all tissues examined and were attributable to alternative polyadenylylation sites at the 3' end of the gene. The encoding protein consists of 345 amino acids with a calculated molecular size of 38.7 kDa and does not contain any sequence similarities to other well-characterized mammalian nucleoside kinases, setting it apart from this family of structurally and functionally related proteins. In contrast, two regions were identified with significant sequence identity to microbial ribokinase and fructokinases and a bacterial inosine/guanosine kinase. Thus, adenosine kinase is a structurally distinct mammalian nucleoside kinase that appears to be akin to sugar kinases of microbial origin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several di- and tripeptides containing protected purine (adenine) and pyrimidine (thymine) residues on their side chains were synthesized. The parent amino acids alpha, alpha-dialkylated in a symmetrical manner. An effective coupling procedure was developed for these sterically hindered amino acids: the fluoren-9-ylmethyloxycarbonyl-protected amino acid was dehydrated to its oxazolinone form, which was coupled in good yields with amino esters in hot tetrachloroethane.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

GTP cyclohydrolase I of Escherichia coli is a torus-shaped homodecamer with D5 symmetry and catalyzes a complex ring expansion reaction conducive to the formation of dihydroneopterin triphosphate from GTP. The x-ray structure of a complex of the enzyme with the substrate analog, dGTP, bound at the active site was determined at a resolution of 3 A. In the decamer, 10 equivalent active sites are present, each of which contains a 10-A deep pocket formed by surface areas of 3 adjacent subunits. The substrate forms a complex hydrogen bond network with the protein. Active site residues were modified by site-directed mutagenesis, and enzyme activities of the mutant proteins were measured. On this basis, a mechanism of the enzyme-catalyzed reaction is proposed. Cleavage of the imidazole ring is initiated by protonation of N7 by His-179 followed by the attack of water at C8 of the purine system. Cystine Cys-110 Cys-181 may be involved in this reaction step. Opening of the imidazole ring may be in concert with cleavage of the furanose ring to generate a Schiff's base from the glycoside. The gamma-phosphate of GTP may be involved in the subsequent Amadori rearrangement of the carbohydrate side chain by activating the hydroxyl group of Ser-135.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

cdc18+ of Schizosaccharomyces pombe is a periodically expressed gene that is required for entry into S phase and for the coordination of S phase with mitosis. cdc18+ is related to the Saccharomyces cerevisiae gene CDC6, which has also been implicated in the control of DNA replication. We have identified a new Sch. pombe gene, orp1+, that encodes an 80-kDa protein with amino acid sequence motifs conserved in the Cdc18 and Cdc6 proteins. Genetic analysis indicates that orp1+ is essential for viability. Germinating spores lacking the orp1+ gene are capable of undergoing one or more rounds of DNA replication but fail to progress further, arresting as long cells with a variety of deranged nuclear structures. Unlike cdc18+, orp1+ is expressed constitutively during the cell cycle. cdc18+, CDC6, and orp1+ belong to a family of related genes that also includes the gene ORC1, which encodes a subunit of the origin recognition complex (ORC) of S. cerevisiae. The products of this gene family share a 250-amino acid domain that is highly conserved in evolution and contains several characteristic motifs, including a consensus purine nucleotide-binding motif. Among the members of this gene family, orp1+ is most closely related to S. cerevisiae ORC1. Thus, the protein encoded by orp1+ may represent a component of an Sch. pombe ORC. The orp1+ gene is also closely related to an uncharacterized putative human homologue. It is likely that the members of the cdc18/CDC6 family play key roles in the regulation of DNA replication during the cell cycle of diverse species from archaebacteria to man.