958 resultados para tyrosine hydroxylase


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study investigated the nature of previous termvasodilator mechanismsnext term in the dorsal aorta of the giant shovelnose ray, Rhinobatus typus. Anatomical techniques found no evidence for an endothelial nitric oxide synthase, but neural nitric oxide synthase was found to be present in the perivascular nerve fibres of the dorsal aorta and other arteries and veins using both NADPH-diaphorase staining and immunohistochemistry with a specific neural NOS antibody. Arteries and veins both contained large nNOS-positive nerve trunks from which smaller nNOS-positive bundles branched and formed a plexus in the vessel wall. Single, varicose nNOS-positive nerve fibres were present in both arteries and veins. Within the large bundles of both arteries and veins, groups of nNOS-positive cell bodies forming microganglia were observed. Double-labelling immunohistochemistry using an antibody to tyrosine hydroxylase showed that nearly all the NOS nerves were not sympathetic. Acetylcholine always caused constriction of isolated rings of the dorsal aorta and the nitric oxide donor, sodium nitroprusside, did not mediate any dilation. Addition of nicotine (3×10−4 M) to preconstricted rings caused a vasodilation that was not affected by the nitric oxide synthase inhibitor, Image -NNA (10−4 M), nor the soluble guanylyl cyclase inhibitor, ODQ (10−5 M). This nicotine-mediated vasodilation was, therefore, not due to the synthesis and release of NO. Disruption of the endothelium significantly reduced or eliminated the nicotine-mediated vasodilation. In addition, indomethacin (10−5 M), an inhibitor of cyclooxygenases, significantly increased the time period to maximal dilation and reduced, but did not completely inhibit the nicotine-mediated vasodilation. These data support the hypothesis that a prostaglandin is released from the vascular endothelium of a batoid ray, as has been described previously in other groups of fishes. The function of the nitrergic innervation of the blood vessels is not known because nitric oxide does not appear to regulate vascular tone.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Medullary catecholamine and hypothalamic neurosecretory oxytocin cells are activated by hypotension, but previous studies have provided uncertain outcomes concerning their ability to respond to a purely hypovolaemic stimulus. In the present study, injections of PEG/water and pentolinium were used to elicit non-hypotensive, isosmotic hypovolaemia and isovolaemic, isosmotic hypotension, respectively, in conscious rats. Animals were sacrificed 2 h after treatment. Immunolabelling for Fos, tyrosine hydroxylase and oxytocin established that these two stimuli activate almost identical populations of catecholamine neurons in the ventrolateral and dorsomedial medulla, and very similar populations of oxytocin cells in the supraoptic and paraventricular nuclei of the hypothalamus.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The ability to microdissect individual cells from the nervous system has enormous potential, as it can allow for the study of gene expression in phenotypically identified cells. However, if the resultant gene expression profiles are to be accurately ascribed, it is necessary to determine the extent of contamination by nontarget cells in the microdissected sample. Here, we show that midbrain dopamine neurons can be laser-microdissected to a high degree of enrichment and purity. The average enrichment for tyrosine hydroxylase (TH) gene expression in the microdissected sample relative to midbrain sections was approximately 200-fold. For the dopamine transporter (DAT) and the vesicular monoamine transporter type 2 (Vmat2), average enrichments were approximately 100- and 60-fold, respectively. Glutamic acid decarboxylase (Gad65) expression, a marker for GABAergic neurons, was several hundredfold lower than dopamine neuron-specific genes. Glial cell and glutamatergic neuron gene expression were not detected in microdissected samples. Additionally, SN and VTA dopamine neurons had significantly different expression levels of dopamine neuron-specific genes, which likely reflects functional differences between the two cell groups. This study demonstrates that it is possible to laser-microdissect dopamine neurons to a high degree of cell purity. Therefore gene expression profiles can be precisely attributed to the targeted microdissected cells.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The 3-hydroxytyramine/dopamine (DA) is a monoamine of catecholamineric group and consists in the progenitor substantia of synthesis of noradrenaline and adrenaline, having the enzyme tyrosine hydroxylase as a regulator of this process. Nuclei of midbrain expressing DA are the retrorubral field (RRF, A8 group), the substantia nigra pars compacta (SNc, A9 group) and the ventral tegmental area (VTA, A10 group). These nuclei are involved in three complex circuitry called mesostriatal, mesocortical and mesolimbic, which are related directly with various behavioral manifestations such as motor control, reward signaling in behavioural learning, motivation and pathological manifestations of Parkinson s disease and schizophrenia. The aim of this study was describe the morphology of midbrain dopaminergic neurons (A8, A9 and A10) of the rock cavy (Kerodon rupestris), a rodent belonging to the family Caviidae typical of the Brazilian Northeast, which is being adopted as a model for neuroanatomical studies in laboratory of neuroanatomy of the Federal University of Rio Grande do Norte. Coronal sections of brains of the rock cavies were submitted to staining by Nissl s method and immunohistochemistry against tyrosine hydroxylase. The nuclear organization of the midbrain dopaminergic nuclei of the rock cavy is very similar to that found in other animals of the order Rodentia, except by the presence of the tail of substantia nigra, which was found only in the studied species. We concluded that the midbrain dopaminergic nuclei are phylogenetically stable among species, but we think to be it necessary to expand the studies about the particularity found the rock cavy, investigating its occurrence in other species of rodents or investigating its functional relevance

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The protozoan parasite Toxoplasma gondii transforms the innate aversion of rats for cat urine into a fatal attraction, that increases the likelihood of the parasite completing its life cycle in the cat s intestine. The neural circuits implicated in innate fear, anxiety, and learned fear all overlap considerably, raising the possibility, that T. gondii may disrupt all of these nonspecifically. In this study, we evaluated immunoreactivity for tyrosine hydroxylase (TH) in areas associated with innate fear of infected male swiss mice. The latent Toxoplasma infection converted the aversion of mice to feline odors into attraction. This loss of fear is remarkably specific, as demonstrated by Vyas et al (2007), because infection did not diminish learned fear, anxiety-like behavior, olfaction, or nonaversive learning. However, the neurochemical mechanism related to alterations in innate fear due to T. gondii infection remains poorly studied. 20 mice were inoculated with bradyzoites (25 cysts) from a Toxoplasma gondii (Me-49 strain). The brains were removed after 60 days, sectioned and processed for TH immunohistochemistry. The correlation between the amount of cysts per area and the densitometric analysis of neurotransmitter reactivity was low in the areas implicated in innate fear of infected animals, when comparated with noninfected controls

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Orofacial movement is a complex function performed by facial and jaw muscles. Jaw movement is enacted through the triggering of motoneurons located primarily in the trigeminal motor nucleus (Mo5). The Mo5 is located in the pontine reticular formation, which is encircled by premotor neurons. Previous studies using retrograde tracers have demonstrated that premotor neurons innervating the Mo5 are distributed in brainstem areas, and electrophysiological studies have suggested the existence of a subcortical relay in the corticofugal-Mo5 pathway. Various neurotransmitters have been implicated in oral movement. Dopamine is of special interest since its imbalance may produce changes in basal ganglia activity, which generates abnormal movements, including jaw motor dysfunction, as in oral dyskinesia and possibly in bruxism. However, the anatomical pathways connecting the dopaminergic systems with Mo5 motoneurons have not been studied systematically. After injecting retrograde tracer fluorogold into the Mo5, we observed retrograde-labeled neurons in brainstem areas and in a few forebrain nuclei, such as the central nucleus of the amygdala, and the parasubthalamic nucleus. By using dual-labeled immunohistochemistry, we found tyrosine hydroxylase (a catecholamine-processing enzyme) immunoreactive fibers in close apposition to retrograde-labeled neurons in brainstem nuclei, in the central nucleus of the amygdala and the parasubthalamic nucleus, suggesting the occurrence of synaptic contacts. Therefore, we suggested that catecholamines may regulate oralfacial movements through the premotor brainstem nuclei, which are related to masticatory control, and forebrain areas related to autonomic and stress responses. (C) 2005 Elsevier B.V.. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Afferents to the primary startle circuit are essential for the elicitation and modulation of the acoustic startle reflex (ASR). In the rat, cochlear root neurons (CRNs) comprise the first component of the acoustic startle circuit and play a crucial role in mediating the ASR. Nevertheless, the neurochemical pattern of their afferents remains unclear. To determine the distribution of excitatory and inhibitory inputs, we used confocal microscopy to analyze the immunostaining for vesicular glutamate and GABA transporter proteins (VGLUT1 and VGAT) on retrogradely labeled CRNs. We also used reverse transcription-polymerase chain reaction (RT-PCR) and immunohistochemistry to detect and localize specific neurotransmitter receptor subunits in the cochlear root. Our results show differential distributions of VGLUT1- and VGAT-immunoreactive endings around cell bodies and dendrites. The RT-PCR data showed a positive band for several ionotropic glutamate receptor subunits, M1-M5 muscarinic receptor subtypes, the glycine receptor alpha 1 subunit (GlyR alpha 1), GABA(A), GABA(B), and subunits of alpha 2 and beta-noradrenergic receptors. By immunohistochemistry, we confirmed that CRN cell bodies exhibit positive immunoreaction for the glutamate receptor (GluR) 3 and NR1 GluR subunits. Cell bodies and dendrites were also positive for M2 and M4, and GlyR alpha 1. Other subunits, such as GluR1 and GluR4 of the AMPA GluRs, were observed in glial cells neighboring unlabeled CRN cell bodies. We further confirmed the existence of nor-adrenergic afferents onto CRNs from the locus coeruleus by combining tyrosine hydroxylase immunohistochemistry and tract-tracing experiments. Our results provide valuable information toward understanding how CRNs might integrate excitatory and inhibitory inputs, and hence how they could elicit and modulate the ASR. (C) 2008 IBRO. Published by Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Locus coeruleus (LC) has been suggested as a CO2 chemoreceptor site in mammals. In the present study, we assessed the role of LC noradrenergic neurons in the cardiorespiratory and thermal responses to hypercapnia. To selectively destroy LC noradrenergic neurons, we administered 6-hydroxydopamine (6-OHDA) bilaterally into the LC of male Wistar rats. Control animals had vehicle (ascorbic acid) injected (sham group) into the LC. Pulmonary ventilation (plethysmograph), mean arterial pressure (MAP), heart rate (HR), and body core temperature (T-c, data loggers) were measured followed by 60 min of hypercapnic exposure (7% CO2 in air). To verify the correct placement and effectiveness of the chemical lesions, tyrosine hydroxylase immunoreactivity was performed. Hypercapnia caused an increase in pulmonary ventilation in all groups, which resulted from increases in respiratory frequency and tidal volume (V-T) in sham-operated and 6-OHDA-lesioned groups. The hypercapnic ventilatory response was significantly decreased in 6-OHDA-lesioned rats compared with sham group. This difference was due to a decreased V-T in 6-OHDA rats. LC chemical lesion or hypercapnia did not affect MAP, HR, and T-c. Thus, we conclude that LC noradrenergic neurons modulate hypercapnic ventilatory response but play no role in cardiovascular and thermal regulation under resting conditions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O Toxoplasma gondii é um protozoário parasita intracelular obrigatório de prevalência mundial e importante causador de doenças em humanos e animais domésticos. No Brasil, até 80% da população pode estar infectada, dependendo da região. Os pacientes infectados agudamente geralmente apresentam infecção assintomática com posterior desenvolvimento de cistos teciduais, que são mais comumente encontrados nos músculos estriados, retina e cérebro. A infecção latente pode alterar o comportamento dos animais hospedeiros e provocar sintomas psicóticos em humanos. Estudos sugerem que esta infecção pode contribuir para a ocorrência de desordens neurológicas e psiquiátricas, como por exemplo, a doença de Parkinson e esquizofrenia, que são associadas com anormalidades do sistema dopaminérgico. Neste estudo, avaliou-se a imunoreatividade contra a enzima tirosina hidroxilase (TH) e a atividade da NADPH-diaforase na substância negra do cérebro de camundongos infectados. Camundongos machos da linhagem Swiss Webster (Mus musculus) receberam por gavagem 10 cistos contendo bradizoítos da cepa Me-49 do Toxoplasma gondii. Os cérebros destes camundongos foram removidos após eutanásia por decapitação após os períodos de 30 e 60 dias de inoculação. A análise das secções mostrou uma reduzida marcação histoquímica para NADPHdiaforase na substância negra dos animais infectados quando comparados com os animais controle. Esta redução foi observada também na imunoreatividade contra a enzima TH na substância negra. Estes resultados indicam que a presença do T. gondii modifica o metabolismo na região da substância negra, modulando os níveis de óxido nítrico (NO) e dopamina, o que pode ser responsável pelas alterações comportamentais presentes nos hospedeiros intermediários infectados.