704 resultados para oligonucleotide


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tricyclo-DNA (tcDNA) is a sugar- and backbone-modified analogue of DNA that is currently tested as antisense oligonucleotide for the treatment of Duchenne muscular dystrophy. The name tricyclo-DNA is derived from the modified sugar-moiety: the deoxyribose is extended to a three-membered ring system. This modification is designed to limit the flexibility of the structure, thus giving rise to entropically stabilized hybrid duplexes formed between tcDNA and complementary DNA or RNA oligonucleotides. While the structural modifications increase the biostability of the therapeutic agent, they also render the oligonucleotide inaccessible to enzyme-based sequencing methods. Tandem mass spectrometry constitutes an alternative sequencing technique for partially and fully modified oligonucleotides. For reliable sequencing, the fragmentation mechanism of the structure in question must be understood. Therefore, the presented work evaluates the effect of the modified sugar-moiety on the gas-phase dissociation of single stranded tcDNA. Moreover, our experiments reflect the exceptional gas-phase stability of hybrid duplexes that is most noticeable in the formation of truncated duplex ions upon collision-induced dissociation. The stability of the duplex arises from the modified sugar-moiety, as the rigid structure of the tcDNA single strand minimizes the change of the entropy for the annealing. Moreover, the tc-modification gives rise to extended conformations of the nucleic acids in the gas-phase, which was studied by ion mobility spectrometry-mass spectrometry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The recent ability to sequence whole genomes allows ready access to all genetic material. The approaches outlined here allow automated analysis of sequence for the synthesis of optimal primers in an automated multiplex oligonucleotide synthesizer (AMOS). The efficiency is such that all ORFs for an organism can be amplified by PCR. The resulting amplicons can be used directly in the construction of DNA arrays or can be cloned for a large variety of functional analyses. These tools allow a replacement of single-gene analysis with a highly efficient whole-genome analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Funding: This study is supported by the National Institute for Health Research Biomedical Research Centre at Great Ormond Street Hospital for Children NHS Foundation Trust and University College London (FM and HZ), the Medical Research Council grant (grant reference MR/L013142/1, FM), SMA-Europe grant (FM and HZ) and Great Ormond Street Hospital Children’s Charity grants (FM and JM). JEM is supported by Great Ormond Street Hospital Children’s Charity. PS is supported by Bill Marshall Fellowship and The CP Charitable Trust at Great Ormond Street Hospital and UCL. SHP is supported by SMA Trust and Euan MacDonald Centre for Motor Neurone Disease Research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Overexpression of the RIα subunit of cAMP-dependent protein kinase (PKA) has been demonstrated in various human cancers. PKA has been suggested as a potential target for cancer therapy. The goal of the present study was to evaluate an anti-PKA antisense oligonucleotide (mixed-backbone oligonucleotide) as a therapeutic approach to human cancer treatment. The identified oligonucleotide inhibited the growth of cell lines of human colon cancer (LS174T, DLD-1), leukemia (HL-60), breast cancer (MCF-7, MDA-MB-468), and lung cancer (A549) in a time-, concentration-, and sequence-dependent manner. In a dose-dependent manner, the oligonucleotide displayed in vivo antitumor activity in severe combined immunodeficient and nude mice bearing xenografts of human cancers of the colon (LS174T), breast (MDA-MB-468), and lung (A549). The routes of drug administration were intraperitoneal and oral. Synergistic effects were found when the antisense oligonucleotide was used in combination with the cancer chemotherapeutic agent cisplatin. The pharmacokinetics of the oligonucleotide after oral administration of 35S-labeled oligonucleotide into tumor-bearing mice indicated an accumulation and retention of the oligonucleotide in tumor tissue. This study further provides a basis for clinical studies of the antisense oligonucleotide targeted to the RIα subunit of PKA (GEM 231) as a cancer therapeutic agent used alone or in combination with conventional chemotherapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mechanistic insights to viral replication and pathogenesis generally have come from the analysis of viral gene products, either by studying their biochemical activities and interactions individually or by creating mutant viruses and analyzing their phenotype. Now it is possible to identify and catalog the host cell genes whose mRNA levels change in response to a pathogen. We have used DNA array technology to monitor the level of ≈6,600 human mRNAs in uninfected as compared with human cytomegalovirus-infected cells. The level of 258 mRNAs changed by a factor of 4 or more before the onset of viral DNA replication. Several of these mRNAs encode gene products that might play key roles in virus-induced pathogenesis, identifying them as intriguing targets for further study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Protein kinase A type I plays a key role in neoplastic transformation, conveying mitogenic signals of different growth factors and oncogenes. Inhibition of protein kinase A type I by antisense oligonucleotides targeting its RIα regulatory subunit results in cancer cell growth inhibition in vitro and in vivo. A novel mixed backbone oligonucleotide HYB 190 and its mismatched control HYB 239 were tested on soft agar growth of several human cancer cell types. HYB 190 demonstrated a dose-dependent inhibition of colony formation in all cell lines whereas the HYB 239 at the same doses caused a modest or no growth inhibition. A noninhibitory dose of each mixed backbone oligonucleotide was used in OVCAR-3 ovarian and GEO colon cancer cells to study whether any cooperative effect may occur between the antisense and a series of cytotoxic drugs acting by different mechanisms. Treatment with HYB 190 resulted in an additive growth inhibitory effect with several cytotoxic drugs when measured by soft agar colony formation. A synergistic growth inhibition, which correlated with increased apoptosis, was observed when HYB 190 was added to cancer cells treated with taxanes, platinum-based compounds, and topoisomerase II selective drugs. This synergistic effect was also observed in breast cancer cells and was obtained with other related drugs such as docetaxel and carboplatin. Combination of HYB 190 and paclitaxel resulted in an accumulation of cells in late S-G2 phases of cell cycle and marked induction of apoptosis. A cooperative effect of HYB 190 and paclitaxel was also obtained in vivo in nude mice bearing human GEO colon cancer xenografts. These results are the first report of a cooperative growth inhibitory effect obtained in a variety of human cancer cell lines by antisense mixed backbone oligonucleotide targeting protein kinase A type I-mediated mitogenic signals and specific cytotoxic drugs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Genetic analysis of limiting quantities of genomic DNA play an important role in DNA forensics, paleoarcheology, genetic disease diagnosis, genetic linkage analysis, and genetic diversity studies. We have tested the ability of degenerate oligonucleotide primed polymerase chain reaction (DOP-PCR) to amplify picogram quantities of human genomic DNA for the purpose of increasing the amount of template for genotyping with microsatellite repeat markers. DNA was uniformly amplified at a large number of typable loci throughout the human genome with starting template DNAs from as little as 15 pg to as much as 400 ng. A much greater-fold enrichment was seen for the smaller genomic DOP-PCRs. All markers tested were amplified from starting genomic DNAs in the range of 0.6–40 ng with amplifications of 200- to 600-fold. The DOP-PCR-amplified genomic DNA was an excellent and reliable template for genotyping with microsatellites, which give distinct bands with no increase in stutter artifact on di-, tri-, and tetranucleotide repeats. There appears to be equal amplification of genomic DNA from 55 of 55 tested discrete microsatellites implying near complete coverage of the human genome. Thus, DOP-PCR appears to allow unbiased, hundreds-fold whole genome amplification of human genomic DNA for genotypic analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The application of gene therapy to human disease is currently restricted by the relatively low efficiency and potential hazards of methods of oligonucleotide or gene delivery. Antisense or transcription factor decoy oligonucleotides have been shown to be effective at altering gene expression in cell culture expreriments, but their in vivo application is limited by the efficiency of cellular delivery, the intracellular stability of the compounds, and their duration of activity. We report herein the development of a highly efficient method for naked oligodeoxynucleotide (ODN) transfection into cardiovascular tissues by using controlled, nondistending pressure without the use of viral vectors, lipid formulations, or exposure to other adjunctive, potentially hazardous substances. In this study, we have documented the ability of ex vivo, pressure-mediated transfection to achieve nuclear localization of fluorescent (FITC)-labeled ODN in approximately 90% and 50% of cells in intact human saphenous vein and rat myocardium, respectively. We have further documented that pressure-mediated delivery of antisense ODN can functionally inhibit target gene expression in both of these tissues in a sequence-specific manner at the mRNA and protein levels. This oligonucleotide transfection system may represent a safe means of achieving the intraoperative genetic engineering of failure-resistant human bypass grafts and may provide an avenue for the genetic manipultation of cardiac allograft rejection, allograft vasculopathy, or other transplant diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The pleiotropic activities of interferons (IFNs) are mediated primarily through the transcriptional regulation of many downstream effector genes. The mRNA profiles from IFN-α, -β, or -γ treatments of the human fibrosarcoma cell line, HT1080, were determined by using oligonucleotide arrays with probe sets corresponding to more than 6,800 human genes. Among these were transcripts for known IFN-stimulated genes (ISGs), the expression of which were consistent with previous studies in which the particular ISG was characterized as responsive to either Type I (α, β) or Type II (γ) IFNs, or both. Importantly, many novel IFN-stimulated genes were identified that were diverse in their known biological functions. For instance, several novel ISGs were identified that are implicated in apoptosis (including RAP46/Bag-1, phospholipid scramblase, and hypoxia inducible factor-1α). Furthermore, several IFN-repressed genes also were identified. These results demonstrate the usefulness of oligonucleotide arrays in monitoring mammalian gene expression on a broad and unprecedented scale. In particular, these findings provide insights into the basic mechanisms of IFN actions and ultimately may contribute to better therapeutic uses for IFNs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peptide bond formation by the ribosome requires 23S rRNA and its interaction with the 3′-CCA end of tRNA. To investigate the possible evolutionary development of the peptidyl transfer reaction, we tried to obtain peptide bond formation without the ribosome or rRNA simply by using a piece of tRNA—an aminoacyl-minihelix—mixed with sequence-specific oligonucleotides that contained puromycin. Peptide bond formation was detected by gel electrophoresis, TLC analysis, and mass spectrometry. Peptide synthesis depended on sequence complementarity between the 3′-CCA sequence of the minihelix and the puromycin-bearing oligonucleotide. However, proximity of the reacting species was not by itself sufficient for peptide bond formation. In addition, imidazole as a catalyst was required. Its role may be similar to the recently proposed mechanism, wherein A2451 of 23S rRNA works as a general base. Thus, peptide bond formation can be achieved with a simple, minimized system that captures the essence of an interaction seen in the ribosome.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The bcl-2 proto-oncogene is overexpressed in a variety of human cancers and plays an important role in programmed cell death. Recent reports implied that the 3′-untranslated region (3′UTR) functions effectively in the regulation of gene expression. Here, we attempt to assay the ability of triplex forming oligonucleotides (TFOs) to inhibit expression of a target gene in vivo and to examine the potential of the 3′UTR of the bcl-2 proto-oncogene in the regulation of bcl-2 gene expression. To do this, we have developed a novel cellular system that involves transfection of a Doxycyclin inducible expression plasmid containing the bcl-2 ORF and the 3′UTR together with a TFO targeted to the 3′UTR of the bcl-2 proto-oncogene. Phosphorothioate-modified TFO targeted to the 3′UTR of the bcl-2 gene significantly downregulated the expression of the bcl-2 gene in HeLa cells as demonstrated by western blotting. Our results indicate that blocking the functions of the 3′UTR using the TFO can downregulate the expression of the targeted gene, and suggest that triplex strategy is a promising approach for oligonucleotide-based gene therapy. In addition, triplex-based sequence targeting may provide a useful tool for studying the regulation of gene expression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rolling circle amplification (RCA) is a surface-anchored DNA replication reaction that can be exploited to visualize single molecular recognition events. Here we report the use of RCA to visualize target DNA sequences as small as 50 nts in peripheral blood lymphocytes or in stretched DNA fibers. Three unique target sequences within the cystic fibrosis transmembrane conductance regulator gene could be detected simultaneously in interphase nuclei, and could be ordered in a linear map in stretched DNA. Allele-discriminating oligonucleotide probes in conjunction with RCA also were used to discriminate wild-type and mutant alleles in the cystic fibrosis transmembrane conductance regulator, p53, BRCA-1, and Gorlin syndrome genes in the nuclei of cultured cells or in DNA fibers. These observations demonstrate that signal amplification by RCA can be coupled to nucleic acid hybridization and multicolor fluorescence imaging to detect single nucleotide changes in DNA within a cytological context or in single DNA molecules. This provides a means for direct physical haplotyping and the analysis of somatic mutations on a cell-by-cell basis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A typical G-rich telomeric DNA strand, which runs 5′→3′ toward the chromosome ends, protrudes by several nucleotides in lower eukaryotes. In human chromosomes long G-rich 3′-overhangs have been found. Apart from the standard G-rich tail, several non-canonical terminal structures have been proposed. However, the mechanism of long-tail formation, the presence and the role of these structures in telomere maintenance or shortening are not completely understood. In a search for a simple method to accurately measure the 3′-overhang we have established a protocol based on the ligation of telomeric oligonucleotide hybridized to non-denatured DNA under stringent conditions (oligonucleotide ligation assay with telomeric repeat oligonucleotide). This method enabled us to detect a large proportion of G-rich single-stranded telomeric DNA that was as short as 24 nt. Nevertheless, we showed G-tails longer than 400 nt. In all tested cells the lengths ranging from 108 to 270 nt represented only 37% of the whole molecule population, while 56–62% were <90 nt. Our protocol provides a simple and sensitive method for measuring the length of naturally occurring unpaired repeated DNA.