998 resultados para inhibition kinetics


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Enantioselective CE with sulfated cyclodextrins as chiral selectors was used to determine the CYP3A4-catalyzed N-demethylation kinetics of ketamine to norketamine and its inhibition in the presence of ketoconazole in vitro. Ketamine, a chiral phencyclidine derivative, was incubated with recombinant human CYP3A4 from a baculovirus expression system as racemic mixture and as single enantiomer. Alkaline liquid/liquid extracts of the samples were analyzed with a pH 2.5 buffer comprising 50 mM Tris and phosphoric acid together with either multiple isomer sulfated β-cyclodextrin (10 mg/mL) or highly sulfated γ-cyclodextrin (2%, w/v). Data obtained in the absence of ketoconazole revealed that the N-demethylation occurred stereoselectively with Michaelis-Menten (incubation of racemic ketamine) and Hill (separate incubation of single enantiomers) kinetics. Data generated in the presence of ketoconazole as the inhibitor could best be fitted to a one-site competitive model and inhibition constants were calculated using the equation of Cheng and Prusoff. No stereoselective difference was observed, but inhibition constants for the incubation of racemic ketamine were found to be larger compared with those obtained with the incubation of single ketamine enantiomers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of proteasome inhibitors in cancer has received much attention with the recent FDA approval of bortezomib (Velcade/PS-341). However, in the chronic lymphocytic leukemia (CLL) clinical trial, bortezomib was not as effective as it was in vitro. Accordingly, results in prostate cancer were not remarkable, although regression of lymphadenopathy was observed. This response was also seen in CLL. ^ The proteasome degrades ∼80% of intracellular proteins. Although specific pathways affected by proteasome inhibitors are known, there are still unidentified mechanisms by which they induce apoptosis. The efficacy and mechanism of action of the reversible proteasome inhibitor bortezomib were compared to the novel irreversible inhibitor NPI-0052 in this study, and their mechanisms of action in CLL and prostate cancer were examined. ^ NPI-0052 inhibited proteasome activity and induced apoptosis with more rapid kinetics than bortezomib in CLL. Inhibition of proteasome activity with NPI-0052 was also more durable. Interestingly, bortezomib is cleared from the serum within 15min, which is insufficient time for bortezomib to effectively inhibit the proteasome. However, only 5min exposure was needed for NPI-0052 to produce maximal proteasome inhibition. The data suggest that bortezomib's slow kinetics and reversible nature limit its potential in vivo and the use of NPI-0052 should be considered. ^ In examining the mechanism(s) by which bortezomib and NPI-0052 induce apoptosis in CLL, both were found to elicit the ER stress pathway. A stromal cell co-culture system prevented apoptosis induced by both proteasome inhibitors, suggesting that if such factors in vivo were responsible for reducing bortezomib's efficacy, NPI-0052 would not prove useful either. Finally, Lyn, a Src family kinase (SFK), was decreased in response to bortezomib and NPI-0052 and correlated with apoptosis induction in CLL and prostate cancer. Both proteasome inhibitors specifically targeted Lyn rather than SFKs in general. ^ SFKs are overexpressed in cancer and involved in cell signaling, survival, and metastasis. In prostate cancer cells, both proteasome inhibition and Lyn-silencing significantly inhibited migration. Preliminary evidence also suggested that Lyn downregulation decreases invasion potential. Together, these data suggest that proteasome inhibitors are potential candidates for anti-metastasic therapy and further investigation is warranted for the use of Lyn-targeted therapy to treat metastases. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cytochrome P450 3A4 is generally considered to be the most important human drug-metabolizing enzyme and is known to catalyze the oxidation of a number of substrates in a cooperative manner. An allosteric mechanism is usually invoked to explain the cooperativity. Based on a structure–activity study from another laboratory using various effector–substrate combinations and on our own studies using site-directed mutagenesis and computer modeling of P450 3A4, the most likely location of effector binding is in the active site along with the substrate. Our study was designed to test this hypothesis by replacing residues Leu-211 and Asp-214 with the larger Phe and Glu, respectively. These residues were predicted to constitute a portion of the effector binding site, and the substitutions were designed to mimic the action of the effector by reducing the size of the active site. The L211F/D214E double mutant displayed an increased rate of testosterone and progesterone 6β-hydroxylation at low substrate concentrations and a decreased level of heterotropic stimulation elicited by α-naphthoflavone. Kinetic analyses of the double mutant revealed the absence of homotropic cooperativity with either steroid substrate. At low substrate concentrations the steroid 6β-hydroxylase activity of the wild-type enzyme was stimulated by a second steroid, whereas L211F/D214E displayed simple substrate inhibition. To analyze L211F/D214E at a more mechanistic level, spectral binding studies were carried out. Testosterone binding by the wild-type enzyme displayed homotropic cooperativity, whereas substrate binding by L211F/D214E displayed hyperbolic behavior.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Increasing evidence suggests that HIV-1-specific cytotoxic T lymphocytes (CTLs) are a key host immune response to HIV-1 infection. Generation of CTL responses for prevention or therapy of HIV-1 infection has several intrinsic technical barriers such as antigen expression and presentation, the varying HLA restrictions between different individuals, and the potential for viral escape by sequence variation or surface molecule alteration on infected cells. A strategy to circumvent these limitations is the construction of a chimeric T cell receptor containing human CD4 or HIV-1-specific Ig sequences linked to the signaling domain of the T cell receptor ζ chain (universal T cell receptor). CD8+ CTLs transduced with this universal receptor can then bind and lyse infected cells that express surface HIV-1 gp120. We evaluated the ability of universal-receptor-bearing CD8+ cells from a seronegative donor to lyse acutely infected cells and inhibit HIV-1 replication in vitro. The kinetics of lysis and efficiency of inhibition were comparable to that of naturally occurring HIV-1-specific CTL clones isolated from infected individuals. Further study will be required to determine the utility of these cells as a therapeutic strategy in vivo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The reaction center (RC) from Rhodobacter sphaeroides converts light into chemical energy through the light induced two-electron, two-proton reduction of a bound quinone molecule QB (the secondary quinone acceptor). A unique pathway for proton transfer to the QB site had so far not been determined. To study the molecular basis for proton transfer, we investigated the effects of exogenous metal ion binding on the kinetics of the proton-assisted electron transfer kAB(2) (QA−•QB−• + H+ → QA(QBH)−, where QA is the primary quinone acceptor). Zn2+ and Cd2+ bound stoichiometrically to the RC (KD ≤ 0.5 μM) and reduced the observed value of kAB(2) 10-fold and 20-fold (pH 8.0), respectively. The bound metal changed the mechanism of the kAB(2) reaction. In native RCs, kAB(2) was previously shown to be rate-limited by electron transfer based on the dependence of kAB(2) on the driving force for electron transfer. Upon addition of Zn2+ or Cd2+, kAB(2) became approximately independent of the electron driving force, implying that the rate of proton transfer was reduced (≥ 102-fold) and has become the rate-limiting step. The lack of an effect of the metal binding on the charge recombination reaction D+•QAQB−• → DQAQB suggests that the binding site is located far (>10 Å) from QB. This hypothesis is confirmed by preliminary x-ray structure analysis. The large change in the rate of proton transfer caused by the stoichiometric binding of the metal ion shows that there is one dominant site of proton entry into the RC from which proton transfer to QB−• occurs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cells from patients with Cockayne syndrome (CS) are hypersensitive to DNA-damaging agents and are unable to restore damage-inhibited RNA synthesis. On the basis of repair kinetics of different types of lesions in transcriptionally active genes, we hypothesized previously that impaired transcription in CS cells is a consequence of defective transcription initiation after DNA damage induction. Here, we investigated the effect of UV irradiation on transcription by using an in vitro transcription system that allowed uncoupling of initiation from elongation events. Nuclear extracts prepared from UV-irradiated or mock-treated normal human and CS cells were assayed for transcription activity on an undamaged β-globin template. Transcription activity in nuclear extracts closely mimicked kinetics of transcription in intact cells: extracts from normal cells prepared 1 h after UV exposure showed a strongly reduced activity, whereas transcription activity was fully restored in extracts prepared 6 h after treatment. Extracts from CS cells exhibited reduced transcription activity at any time after UV exposure. Reduced transcription activity in extracts coincided with a strong reduction of RNA polymerase II (RNAPII) containing hypophosphorylated C-terminal domain, the form of RNAPII known to be recruited to the initiation complex. These results suggest that inhibition of transcription after UV irradiation is at least partially caused by repression of transcription initiation and not solely by blocked elongation at sites of lesions. Generation of hypophosphorylated RNAPII after DNA damage appears to play a crucial role in restoration of transcription. CS proteins may be required for this process in a yet unknown way.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wounding of endothelial cells is associated with altered direct intercellular communication. To determine whether gap junctional communication participates to the wound repair process, we have compared connexin (Cx) expression, cell-to-cell coupling and kinetics of wound repair in monolayer cultures of PymT-transformed mouse endothelial cells (clone bEnd.3) and in bEnd.3 cells expressing different dominant negative Cx inhibitors. In parental bEnd.3 cells, mechanical wounding increased expression of Cx43 and decreased expression of Cx37 at the site of injury, whereas Cx40 expression was unaffected. These wound-induced changes in Cx expression were associated with functional changes in cell-to-cell coupling, as assessed with different fluorescent tracers. Stable transfection with cDNAs encoding for the chimeric connexin 3243H7 or the fusion protein Cx43-βGal resulted in perturbed gap junctional communication between bEnd.3 cells under both basal and wounded conditions. The time required for complete repair of a defined wound within a confluent monolayer was increased by ∼50% in cells expressing the dominant negative Cx inhibitors, whereas other cell properties, such as proliferation rate, migration of single cells, cyst formation and extracellular proteolytic activity, were unaltered. These findings demonstrate that proper Cx expression is required for coordinated migration during repair of an endothelial wound.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An important component of cytokine regulation of cell growth and differentiation is rapid transcriptional activation of genes by the JAK-STAT (signal transducer and activator of transcription) signaling pathway. Ligation of cytokine receptors results in tyrosine phosphorylation and activation of receptor-associated Jak protein tyrosine kinases and cytoplasmic STAT transcription factors, which then translocate to the nucleus. We describe the interruption of cytokine triggered JAK-STAT signals by cAMP, the calcium ionophore ionomycin, and granulocyte/macrophage colony-stimulating factor. Jak1 kinase activity, interleukin 6-induced gene activation, Stat3 tyrosine phosphorylation, and DNA-binding were inhibited, as was activation of Jak1 and Stat1 by interferon gamma. The kinetics and requirement for new RNA and protein synthesis for inhibition of interleukin 6 by ionomycin and GM-CSF differed, but both agents increased the association of Jak1 with protein tyrosine phosphatase ID (SH2-containing phosphatase 2). Our results demonstrate that crosstalk with distinct signaling pathways can inhibit JAK-STAT signal transduction, and suggest approaches for modulating cytokine activity during immune responses and inflammatory processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Alterations in Ca2+ signaling may contribute to tumorigenesis and the mechanism of action of some anticancer drugs. The plasma membrane calcium-ATPase (PMCA) is a crucial controller of intracellular Ca2+ signaling. Altered PMCA expression occurs in the mammary gland during lactation and in breast cancer cell lines. Despite this, the consequences of PMCA inhibition in breast cancer cell lines have not been investigated. In this work, we used Tet-off PMCA antisense-expressing MCF-7 cells to assess the effects of PMCA inhibition in a human breast cancer cell line. At a level of PMCA inhibition that did not completely prevent PMCA-mediated Ca2+ efflux and did not induce cell death, a dramatic inhibition of cellular proliferation was observed. Fluorescence-activated cell sorting analysis indicated that PMCA antisense involves changes in cell cycle kinetics but not cell cycle arrest. We concluded that modulation of PMCA has important effects in regulating the proliferation of human breast cancer MCF-7 cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Acetohydroxyacid synthase (Ec 2.2.1.6) catalyses the thiamine diphosphate-dependent reaction between two molecules of pyruvate yielding 2-acetolactacte and CO2. The enzyme will also utilise hydroxypyruvate with a k(cat) value that is 12% of that observed with pyruvate. When hydroxypyruvate is the substrate, the enzyme undergoes progressive inactivation with kinetics that are characteristic of suicide inhibition. It is proposed that the dihydroxyethyl-thiamine diphosphate intermediate can expel a hydroxide ion forming an enol that rearranges to a bound acetyl group.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We review our work on generalisations of the Becker-Doring model of cluster-formation as applied to nucleation theory, polymer growth kinetics, and the formation of upramolecular structures in colloidal chemistry. One valuable tool in analysing mathematical models of these systems has been the coarse-graining approximation which enables macroscopic models for observable quantities to be derived from microscopic ones. This permits assumptions about the detailed molecular mechanisms to be tested, and their influence on the large-scale kinetics of surfactant self-assembly to be elucidated. We also summarise our more recent results on Becker-Doring systems, notably demonstrating that cross-inhibition and autocatalysis can destabilise a uniform solution and lead to a competitive environment in which some species flourish at the expense of others, phenomena relevant in models of the origins of life.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the Becker-Döring model of nucleation with three generalisations; an input of monomer, an input of inhibitor and finally, we allow the monomers to form two morphologies of cluster. We assume size-independent aggregation and fragmentation rates. Initially we consider the problem of constant monomer input and determine the steady-state solution approached in the large-time limit, and the manner in which it is approached. Secondly, in addition to a constant input of monomer we allow a constant input of inhibitor, which prevents clusters growing any larger and this removes them from the kinetics of the process; the inhibitor is consumed in the action of poisoning a cluster. We determine a critical ratio of poison to monomer input below which the cluster concentrations tend to a non-zero steady-state solution and the poison concentration tends to a finite value. Above the critical input ratio, the concentrations of all cluster sizes tend to zero and the poison concentration grows without limit. In both cases the solution in the large-time limit is determined. Finally we consider a model where monomers form two morphologies, but the inhibitor only acts on one morphology. Four cases are identified, depending on the relative poison to monomer input rates and the relative thermodynamic stability. In each case we determine the final cluster distribution and poison concentration. We find that poisoning the less stable cluster type can have a significant impact on the structure of the more stable cluster distribution; a counter-intuitive result. All results are shown to agree with numerical simulation.