946 resultados para dna methylation


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DNA methylation biomarkers capable of diagnosis and subtyping have been found for many cancers. Fifteen such markers have previously been identified for pediatric acute lymphoblastic leukemia (ALL). Validation of these markers is necessary to assess their clinical utility for molecular diagnostics. Substantial efficiencies could be achieved with these DNA methylation markers for disease tracking with potential to replace patient-specific genetic testing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Acute Lymphoblastic Leukaemia (ALL) is the most common cancer in children. Over the past four decades, research has advanced the treatment of this cancer from a less than 60% chance of survival to over 85% today. The causal molecular mechanisms remain unclear. Here, we performed sequencing-based genomic DNA methylation profiling of eight paediatric ALL patients using archived bone marrow smear microscope slides. FINDINGS: SOLiD™ sequencing data was collected from Methyl-Binding Domain (MBD) enriched fractions of genomic DNA. The primary tumour and remission bone marrow sample was analysed from eight patients. Four patients relapsed and the relapsed tumour was analysed. Input and MBD-enriched DNA from each sample was sequenced, aligned to the hg19 reference genome and analysed for enrichment peaks using MACS (Model-based Analysis for ChIP-Seq) and HOMER (Hypergeometric Optimization of Motif EnRichment). In total, 3.67 gigabases (Gb) were sequenced, 2.74 Gb were aligned to the reference genome (average 74.66% alignment efficiency). This dataset enables the interrogation of differential DNA methylation associated with paediatric ALL. Preliminary results reveal concordant regions of enrichment indicative of a DNA methylation signature. CONCLUSION: Our dataset represents one of the first SOLiD™MBD-Seq studies performed on paediatric ALL and is the first to utilise archival bone marrow smears. Differential DNA methylation between cancer and equivalent disease-free tissue can be identified and correlated with existing and published genomic studies. Given the rarity of paediatric haematopoietic malignancies, relative to adult counterparts, our demonstration of the utility of archived bone marrow smear samples to high-throughput methylation sequencing approaches offers tremendous potential to explore the role of DNA methylation in the aetiology of cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

INTRODUCTION: Although there is a documented social gradient for osteoporosis, the underlying mechanism(s) for that gradient remain unknown. We propose a conceptual model based upon the allostatic load theory, to suggest how DNA methylation (DNAm) might underpin the social gradient in osteoporosis and fracture. We hypothesise that social disadvantage is associated with priming of inflammatory pathways mediated by epigenetic modification that leads to an enhanced state of inflammatory reactivity and oxidative stress, and thus places socially disadvantaged individuals at greater risk of osteoporotic fracture. METHODS/RESULTS: Based on a review of the literature, we present a conceptual model in which social disadvantage increases stress throughout the lifespan, and engenders a proinflammatory epigenetic signature, leading to a heightened inflammatory state that increases risk for osteoporotic fracture in disadvantaged groups that are chronically stressed. CONCLUSIONS: Our model proposes that, in addition to the direct biological effects exerted on bone by factors such as physical activity and nutrition, the recognised socially patterned risk factors for osteoporosis also act via epigenetic-mediated dysregulation of inflammation. DNAm is a dynamic modulator of gene expression with considerable relevance to the field of osteoporosis. Elucidating the extent to which this epigenetic mechanism transduces the psycho-social environment to increase the risk of osteoporotic fracture may yield novel entry points for intervention that can be used to reduce individual and population-wide risks for osteoporotic fracture. Specifically, an epigenetic evidence-base may strengthen the importance of lifestyle modification and stress reduction programs, and help to reduce health inequities across social groups. MINI ABSTRACT: Our conceptual model proposes how DNA methylation might underpin the social gradient in osteoporotic fracture. We suggest that social disadvantage is associated with priming of inflammatory signalling pathways, which is mediated by epigenetic modifications, leading to a chronically heightened inflammatory state that places disadvantaged individuals at greater risk of osteoporosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Loss of allele-specific expression by the imprinted genes IGF2 and H19 has been correlated with a differentially methylated region (DMR) upstream to the H19 gene. The H19-DMR contains seven potential CCCTC-binding factor (CTCF) binding sites. CTCF is a chromatin insulator and a multifunctional transcription factor whose binding to the H19-DMR is suppressed by DNA methylation. Our study included a group of 41 head and neck squamous cell carcinoma (HNSCC) samples. The imprinting status of the H19 gene was analyzed in 11 out of 35 positive cases for H19 gene expression, and only 1 of them showed loss of imprinting. We detected a significant correlation (P=0.041, Fisher's exact test) between H19 expression and tumor recurrence. Among H19 positive cases, six were T2, in which five developed recurrence and/or metastasis. Inversely, in the group of tumors that showed no H19 gene expression, 5 out of 24 were T2 and only I presented regional recurrence. These data support the hypothesis that H19 expression could be used as a prognostic marker to indicate recurrence in early stage tumors. We also examined the methylation of the CTCF binding site 1 in a subgroup of these samples. The H19 gene silencing and loss of imprinting were not correlated with the methylation pattern of the CTCF binding site 1. However, the significant correlation between H19 expression and tumor recurrence suggest that this transcript could be a marker for the progression of HNSCC. (c) 2005 Wiley-Liss, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Genetic and epigenetic alterations in choroid plexus tumors, a rare neuroepithelial neoplasm most frequently detected in children, are poorly characterized. Epigenetic silencing associated with aberrant CpG island methylation is one mechanism leading to the loss of tumor suppressor functions in cancer cells. Using methylation-specific polymerase chain reaction, the methylation patterns of the genes CDH1 (E-cadherin), RARB (retinoic acid receptor, beta), and SFN (stratifin; 14-3-3 sigma) were retrospectively investigated in eight choroid plexus tumors (five papillomas, two atypical papillomas, and one carcinoma), as well as in two normal cortexes obtained after autopsy from male individuals aged 6 months and 64 years. Among the six pediatric tumors, the mean age at diagnosis was 1.8 years old (range, 0.2-6) and the two adult tumors were detected in a 66-year-old man and a 45-year-old woman. A high frequency of hypermethylation was detected in CDH1 and SFN genes in tumoral and normal cortex tissues. Tumor-specific RARB hypermethylation was observed in four papillomas. Further studies are required to evaluate the role of aberrant methylation in choroid plexus tumor progression. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report a method for studying global DNA methylation based on using bisulfite treatment of DNA and simultaneous PCR of multiple DNA repetitive elements, such as Alu elements and long interspersed nucleotide elements (LINE). The PCR product, which represents a pool of approximately 15000 genomic loci, could be used for direct sequencing, selective restriction digestion or pyrosequencing, in order to quantitate DNA methylation. By restriction digestion or pyrosequencing, the assay was reproducible with a standard deviation of only 2% between assays. Using this method we found that almost two-thirds of the CpG methylation sites in Alu elements are mutated, but of the remaining methylation target sites, 87% were methylated. Due to the heavy methylation of repetitive elements, this assay was especially useful in detecting decreases in DNA methylation, and this assay was validated by examining cell lines treated with the methylation inhibitor 5-aza-2'deoxycytidine (DAC), where we found a 1-16% decrease in Alu element and 18-60% LINE methylation within 3 days of treatment. This method can be used as a surrogate marker of genome-wide methylation changes. In addition, it is less labor intensive and requires less DNA than previous methods of assessing global DNA methylation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is species divergence in control of DNA methylation during preimplantation development. The exact pattern of methylation in the bovine embryo has not been established nor has its regulation by gender or maternal signals that regulate development such as colony stimulating factor 2 (CSF2). Using immunofluorescent labeling with anti-5-methylcytosine and embryos produced with X-chromosome sorted sperm, it was demonstrated that methylation decreased from the 2-cell stage to the 6-8 cell stage and then increased thereafter up to the blastocyst stage. In a second experiment, embryos of specific genders were produced by fertilization with X- or Y-sorted sperm. The developmental pattern was similar to the first experiment, but there was stage × gender interaction. Methylation was greater for females at the 8-cell stage but greater for males at the blastocyst stage. Treatment with CSF2 had no effect on labeling for DNA methylation in blastocysts. Methylation was lower for inner cell mass cells (i.e., cells that did not label with anti-CDX2) than for trophectoderm (CDX2-positive). The possible role for DNMT3B in developmental changes in methylation was evaluated by determining gene expression and degree of methylation. Steady-state mRNA for DNMT3B decreased from the 2-cell stage to a nadir for D 5 embryos >16 cells and then increased at the blastocyst stage. High resolution melting analysis was used to assess methylation of a CpG rich region in an intronic region of DNMT3B. Methylation percent decreased between the 6-8 cell and the blastocyst stage but there was no difference in methylation between ICM and TE. Results indicate that DNA methylation undergoes dynamic changes during the preimplantation period in a manner that is dependent upon gender and cell lineage. Developmental changes in expression of DNMT3B are indicative of a possible role in changes in methylation. Moreover, DNMT3B itself appears to be under epigenetic control by methylation. © 2013 Dobbs et al.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DNA methylation plays an important role in the epigenetic control of developmental and behavioral plasticity, with connections to the generation of striking phenotypic differences between castes (larger, reproductive queens and smaller, non-reproductive workers) in honeybees and ants. Here, we provide the first comparative investigation of caste- and life stage-associated DNA methylation in several species of bees and vespid wasps displaying different levels of social organization. Our results reveal moderate levels of DNA methylation in most bees and wasps, with no clear relationship to the level of sociality. Strikingly, primitively social Polistes dominula paper wasps show unusually high overall DNA methylation and caste-related differences in site-specific methylation. These results suggest DNA methylation may play a role in the regulation of behavioral and physiological differences in primitively social species with more flexible caste differences. © 2013 Springer-Verlag Berlin Heidelberg.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)