966 resultados para T-CELL EPITOPE


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Die Immuntherapie stellt eine hoffnungsvolle Alternative zu etablierten Behandlungsmethoden für Krebserkrankungen dar. Durch die Aktivierung des Immunsystems erhofft man sich eine selektive Abtötung von Tumorzellen. Eine solche Aktivierung kann durch Vakzinierung mit Glycopeptiden, welche Partialstrukturen tumorassoziierter Oberflächenglycoproteine darstellen, erfolgen. Um eine effektive Immunantwort zu erreichen, ist allerdings eine Konjugation dieser Glycopeptide mit immunogenen Trägern nötig. Zur Darstellung solcher Konjugate wurden im Rahmen dieser Arbeit zunächst mehrere, mit tumorassoziierten Kohlenhydraten glycosylierte Aminosäurebausteine dargestellt. Diese Bausteine wurden anschließend zur Festphasensynthese von Glycopeptiden eingesetzt. Durch ein neuartiges, chemoselektives Kupplungsverfahren konnten diese tumorassoziierten Glycopeptide an ein immunogenes Trägerprotein angebunden werden. Weiterhin wurde durch Festphasenpeptidsynthese ausgehend von einem tetrafunktionellen Lysin-Baustein ein dendrimeres Glycopeptid (MAP) erzeugt. Die Darstellung von vollsynthetischen Vakzinen gelang in Form von Konjugaten bestehend aus einem universellen T-Zell-Epitop und einem tumorassoziierten Glycopeptid. Diese Synthesen wurden ausgehend von einem festphasengebundenen, orthogonal geschützten Lysin durchgeführt. Abschließend wurde die Synthese von Konjugaten bestehend aus einem tumorassoziierten Glycopeptid und dem Mitogen Pam3Cys untersucht.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Eine alternative Methode zur Therapie von Tumorerkrankungen bestünde in einer Immuntherapie ausgelöst durch synthetische Antitumor-Vakzine. Ein vielversprechendes Zielmolekül für eine solche Aktivimmunisierung ist das Glycoprotein MUC1, das auf nahezu allen Epithelgeweben exprimiert und auf Tumorgeweben stark überexprimiert wird. Seine extrazelluläre Domäne enthält eine Vielzahl von Tandem-Repeat-Sequenzen der Art: HGVTSAPDTRPAPGSTAPPA mit fünf potentiellen O-Glycosylierungs-Positionen. Da die Form der Glycosylierung des MUC1 in Tumorzellen stark von der auf normalen Zellen abweicht, liegen auf Tumorzellen eine Reihe tumor-assoziierter Saccharidantigene und Peptidepitope vor.rnIn dieser Arbeit wurden tumor-assoziierte Glycopeptidantigene aus der MUC1-Tandem-Repeat-Region hergestellt. Die synthetisierten MUC1-Glycopeptide tragen in verschiedenen Positionen eine Glycosylierung mit den tumor-assoziierten Tn- und STn-Saccharid-Antigenen. Zur Gewinnung von Vakzinen wurden diese Glycopeptid-Antigene über einen Spacer mit immunstimulierenden Komponenten verknüpft. Als Immunstimulanzien wurden ein T-Zell-Epitop aus dem Ovalbumin (OVA323-339) sowie die Carrier-Proteine Rinderserumalbumin (BSA) und Tetanus-Toxoid (TTox) verwendet. rnDie synthetischen MUC1-Glycopeptide wurden durch Immunisierung von Mäusen einer immunologischen Evaluierung unterzogen. Insbesondere die synthetischen MUC1-Glycopeptid-TTox-Vakzine lösen sehr starke Immunantworten aus. Es konnte gezeigt werden, dass die induzierten Antikörper stark an Tumorzellen und auch an Mammakarzinom-Gewebe binden, was für die Entwicklung von Antitumor-Vakzinen als vielversprechend einzustufen ist.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: CD4+ T cell help is critical in maintaining antiviral immune responses and such help has been shown to be sustained in acute resolving hepatitis C. In contrast, in evolving chronic hepatitis C CD4+ T cell helper responses appear to be absent or short-lived, using functional assays. METHODOLOGY/PRINCIPAL FINDINGS: Here we used a novel HLA-DR1 tetramer containing a highly targeted CD4+ T cell epitope from the hepatitis C virus non-structural protein 4 to track number and phenotype of hepatitis C virus specific CD4+ T cells in a cohort of seven HLA-DR1 positive patients with acute hepatitis C in comparison to patients with chronic or resolved hepatitis C. We observed peptide-specific T cells in all seven patients with acute hepatitis C regardless of outcome at frequencies up to 0.65% of CD4+ T cells. Among patients who transiently controlled virus replication we observed loss of function, and/or physical deletion of tetramer+ CD4+ T cells before viral recrudescence. In some patients with chronic hepatitis C very low numbers of tetramer+ cells were detectable in peripheral blood, compared to robust responses detected in spontaneous resolvers. Importantly we did not observe escape mutations in this key CD4+ T cell epitope in patients with evolving chronic hepatitis C. CONCLUSIONS/SIGNIFICANCE: During acute hepatitis C a CD4+ T cell response against this epitope is readily induced in most, if not all, HLA-DR1+ patients. This antiviral T cell population becomes functionally impaired or is deleted early in the course of disease in those where viremia persists.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A cDNA from adult female Onchocerca volvulus encoding the C-terminal portion of a tropomyosin isoform (termed MOv-14) has been shown previously to confer protective immunity in rodent models of onchocerciasis. The full-length sequence (designated Ov-tmy-1) obtained by PCR amplification, codes for a protein of 33 kDa and shares 91% identity with tropomyosins from other nematodes, falling to 57% identity with human α-tropomyosin. Ov-TMY-1 migrates with an apparent molecular mass of 42 kDa on SDS/PAGE and is present in all life-cycle stages, as determined by immunoblotting. Immunogold electron microscopy identified antigenic sites within muscle blocks and the cuticle of microfilariae and infective larvae. Anti-MOv14 antibodies were abundant in mice exhibiting serum-transferable protection against microfilariae conferred by vaccination with a PBS-soluble parasite extract. In contrast, little or no MOv14-specific antibody was present in mice inoculated with live microfilariae, in which resistance is mediated by antibody-independent mechanisms. In human infections, there was an inverse correlation between anti-tropomyosin IgG levels and densities of microfilariae in the skin. Seropositivity varied with the relative endemicity of infection. An immunodominant B cell epitope within Ov-TMY-1 (AQLLAEEADRKYD) was mapped to the N terminus of the MOv14 protein by using sera from protectively vaccinated mice. Intriguingly, the sequence coincides with an IgE-binding epitope within shrimp tropomyosin, believed to be responsible for hypersensitivity in individuals exhibiting allergy to shellfish. IgG and IgE antibodies reacting with the O. volvulus epitope were detected in human infections. It is concluded that antibody responses to tropomyosin may be important in limiting microfilarial densities in a proportion of individuals with onchocerciasis and have the potential to mediate hypersensitivity reactions to dead microfilariae, raising the possibility of a link with the immunopathology of infection.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To enhance the efficacy of DNA malaria vaccines, we evaluated the effect on protection of immunizing with various combinations of DNA, recombinant vaccinia virus, and a synthetic peptide. Immunization of BALB/c mice with a plasmid expressing Plasmodium yoelii (Py) circumsporozoite protein (CSP) induces H-2Kd-restricted CD8+ cytotoxic T lymphocyte (CTL) responses and CD8+ T cell- and interferon (IFN)-γ-dependent protection of mice against challenge with Py sporozoites. Immunization with a multiple antigenic peptide, including the only reported H-2Kd-restricted CD8+ T cell epitope on the PyCSP (PyCSP CTL multiple antigenic peptide) and immunization with recombinant vaccinia expressing the PyCSP induced CTL but only modest to minimal protection. Mice were immunized with PyCSP DNA, PyCSP CTL multiple antigenic peptide, or recombinant vaccinia expressing PyCSP, were boosted 9 wk later with the same immunogen or one of the others, and were challenged. Only mice immunized with DNA and boosted with vaccinia PyCSP (D-V) (11/16: 69%) or DNA (D-D) (7/16: 44%) had greater protection (P < 0.0007) than controls. D-V mice had significantly higher individual levels of antibodies and class I-restricted CTL activity than did D-D mice; IFN-γ production by ELIspot also was higher in D-V than in D-D mice. In a second experiment, three different groups of D-V mice each had higher levels of protection than did D-D mice, and IFN-γ production was significantly greater in D-V than in D-D mice. The observation that priming with PyCSP DNA and boosting with vaccinia-PyCSP is more immunogenic and protective than immunizing with PyCSP DNA alone supports consideration of a similar sequential immunization approach in humans.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To develop a strategy that promotes efficient antiviral immunity, hybrid virus-like particles (VLP) were prepared by self-assembly of the modified porcine parvovirus VP2 capsid protein carrying a CD8+ T cell epitope from the lymphocytic choriomeningitis virus nucleoprotein. Immunization of mice with these hybrid pseudoparticles, without adjuvant, induced strong cytotoxic T lymphocyte (CTL) responses against both peptide-coated- or virus-infected-target cells. This CD8+ class I-restricted cytotoxic activity persisted in vivo for at least 9 months. Furthermore, the hybrid parvovirus-like particles were able to induce a complete protection of mice against a lethal lymphocytic choriomeningitis virus infection. To our knowledge, this study represents the first demonstration that hybrid nonreplicative VLP carrying a single viral CTL epitope can induce protection against a viral lethal challenge, in the absence of any adjuvant. These recombinant particles containing a single type of protein are easily produced by the baculovirus expression system and, therefore, represent a promising and safe strategy to induce strong CTL responses for the elimination of virus-infected cells.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An analysis of the initial antigen-recognition step in the destruction of target cells by CD8+ cytolytic T lymphocytes (CTLs) shows that a relationship in the form of the law of mass action can be used to describe interactions between antigen-specific receptors on T cells (TCRs) and their natural ligands on target cells (peptide-major histocompatibility protein complexes, termed pepMHC complexes), even though these reactants are confined to their respective cell membranes. For a designated level of lysis and receptor affinities below about 5 X 10(6) M-1, the product of the required number of pepMHC complexes per target cell ("epitope density") and TCR affinity for pepMHC complexes is constant; therefore, over this range TCR affinities can be predicted from epitope densities (or vice versa). At higher receptor affinities ("affinity ceiling") the epitope density required for half-maximal lysis reaches a lower limit of less than 10 complexes per target cell.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Induction of immunity against antigens expressed on tumor cells might prevent or delay recurrence of the disease. Six patients operated on for colorectal carcinoma were immunized with human monoclonal anti-idiotypic antibodies (h-Ab2) against the mouse 17-1A anti-colon carcinoma antibody, mimicking a nominal antigen (GA733-2). All patients developed a long-lasting T-cell immunity against the extracellular domain of GA733-2 (GA733-2E) (produced in a baculovirus system) and h-Ab2. This was shown in vitro by specific cell proliferation (DNA-synthesis) assay as well as by interleukin 2 and interferon gamma production and in vivo by the delayed-type hypersensitivity reaction. Five patients mounted a specific humoral response (IgG) against the tumor antigen GA733-2E (ELISA) and tumor cells expressing GA733-2. Epitope mapping using 23 overlapping peptides of GA733-2E revealed that the B-cell epitope was localized close to the N terminus of GA733-2. Binding of the antibodies to the tumor antigen and to one 18-aa peptide was inhibited by h-Ab2, indicating that the antibodies were able to bind to the antigen as well as to h-Ab2. The results suggest that our h-Ab2 might be able to induce an anti-tumor immunity which may control the growth of tumor cells in vivo.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The focus of the Children's Vaccine Initiative is to encourage the discovery of technology that will make vaccines more readily available to developing countries. Our strategy has been to genetically engineer plants so that they can be used as inexpensive alternatives to fermentation systems for production of subunit antigens. In this paper we report on the immunological response elicited in vivo by using recombinant hepatitis B surface antigen (rHBsAg) purified from transgenic tobacco leaves. The anti-hepatitis B response to the tobacco-derived rHBsAg was qualitatively similar to that obtained by immunizing mice with yeast-derived rHBsAg (commercial vaccine). Additionally, T cells obtained from mice primed with the tobacco-derived rHBsAg could be stimulated in vitro by the tobacco-derived rHBsAg, yeast-derived rHBsAg, and by a synthetic peptide that represents part of the a determinant located in the S region (139-147) of HBsAg. Further support for the integrity of the T-cell epitope of the tobacco-derived rHBsAg was obtained by testing the ability of the primed T cells to proliferate in vitro after stimulation with a monoclonal anti-idiotype and an anti-idiotype-derived peptide, both of which mimic the group-specific a determinant of HBsAg. In total, we have conclusively demonstrated that both B- and T-cell epitopes of HBsAg are preserved when the antigen is expressed in a transgenic plant.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sequence analysis of peptides naturally presented by major histocompatibility complex (MHC) class I molecules has revealed allele-specific motifs in which the peptide length and the residues observed at certain positions are restricted. Nevertheless, peptides containing the standard motif often fail to bind with high affinity or form physiologically stable complexes. Here we present the crystal structure of a well-characterized antigenic peptide from ovalbumin [OVA-8, ovalbumin-(257-264), SIINFEKL] in complex with the murine MHC class I H-2Kb molecule at 2.5-A resolution. Hydrophobic peptide residues Ile-P2 and Phe-P5 are packed closely together into binding pockets B and C, suggesting that the interplay of peptide anchor (P5) and secondary anchor (P2) residues can couple the preferred sequences at these positions. Comparison with the crystal structures of H-2Kb in complex with peptides VSV-8 (RGYVYQGL) and SEV-9 (FAPGNYPAL), where a Tyr residue is used as the C pocket anchor, reveals that the conserved water molecule that binds into the B pocket and mediates hydrogen bonding from the buried anchor hydroxyl group could not be likewise positioned if the P2 side chain were of significant size. Based on this structural evidence, H-2Kb has at least two submotifs: one with Tyr at P5 (or P6 for nonamer peptides) and a small residue at P2 (i.e., Ala or Gly) and another with Phe at P5 and a medium-sized hydrophobic residue at P2 (i.e., Ile). Deciphering of these secondary submotifs from both crystallographic and immunological studies of MHC peptide binding should increase the accuracy of T-cell epitope prediction.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Subunit vaccines commonly lack sufficient immunogenicity to stimulate a comprehensive protective immune response in vivo. We have investigated the potential of specific cytokines (interleukin-2) and particulate delivery systems (liposomes) to enhance antigenicity. Here we report that the IgG1 and IFN-gamma responses to a subunit antigen, consisting of a T and B-cell epitope from Influenza haemagglutinin, can be improved when it is both fused to interelukin-2 and encapsulated in liposomes. However, this vaccine formulation was not able to protect animals against a challenge with live Influenza A/PR/8/34 virus. The addition of more potent immune stimulators may be necessary to improve responses. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Vaccinology is a combinatorial science which studies the diversity of pathogens and the human immune system, and formulations that can modulate immune responses and prevent or cure disease. Huge amounts of data are produced by genomics and proteomics projects and large-scale screening of pathogen-host and antigen-host interactions. Current developments in computational vaccinology mainly support the analysis of antigen processing and presentation and the characterization of targets of immune response. Future development will also include systemic models of vaccine responses. Immunomics, the large-scale screening of immune processes which includes powerful immunoinformatic tools, offers great promise for future translation of basic immunology research advances into successful vaccines.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

MULTIPRED is a web-based computational system for the prediction of peptide binding to multiple molecules ( proteins) belonging to human leukocyte antigens (HLA) class I A2, A3 and class II DR supertypes. It uses hidden Markov models and artificial neural network methods as predictive engines. A novel data representation method enables MULTIPRED to predict peptides that promiscuously bind multiple HLA alleles within one HLA supertype. Extensive testing was performed for validation of the prediction models. Testing results show that MULTIPRED is both sensitive and specific and it has good predictive ability ( area under the receiver operating characteristic curve A(ROC) > 0.80). MULTIPRED can be used for the mapping of promiscuous T-cell epitopes as well as the regions of high concentration of these targets termed T-cell epitope hotspots. MULTIPRED is available at http:// antigen.i2r.a-star.edu.sg/ multipred/.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Motivation: T-cell epitope identification is a critical immunoinformatic problem within vaccine design. To be an epitope, a peptide must bind an MHC protein. Results: Here, we present EpiTOP, the first server predicting MHC class II binding based on proteochemometrics, a QSAR approach for ligands binding to several related proteins. EpiTOP uses a quantitative matrix to predict binding to 12 HLA-DRB1 alleles. It identifies 89% of known epitopes within the top 20% of predicted binders, reducing laboratory labour, materials and time by 80%. EpiTOP is easy to use, gives comprehensive quantitative predictions and will be expanded and updated with new quantitative matrices over time.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The binding between antigenic peptides (epitopes) and the MHC molecule is a key step in the cellular immune response. Accurate in silico prediction of epitope-MHC binding affinity can greatly expedite epitope screening by reducing costs and experimental effort. Recently, we demonstrated the appealing performance of SVRMHC, an SVR-based quantitative modeling method for peptide-MHC interactions, when applied to three mouse class I MHC molecules. Subsequently, we have greatly extended the construction of SVRMHC models and have established such models for more than 40 class I and class II MHC molecules. Here we present the SVRMHC web server for predicting peptide-MHC binding affinities using these models. Benchmarked percentile scores are provided for all predictions. The larger number of SVRMHC models available allowed for an updated evaluation of the performance of the SVRMHC method compared to other well- known linear modeling methods. SVRMHC is an accurate and easy-to-use prediction server for epitope-MHC binding with significant coverage of MHC molecules. We believe it will prove to be a valuable resource for T cell epitope researchers.