901 resultados para Reactive oxygen species (ROS)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: There is increasing evidence suggesting that development of progressive canine cranial cruciate ligament (CCL) rupture involves a gradual degeneration of the CCL itself, initiated by a combination of factors, ranging from mechanical to biochemical. To date, knowledge is lacking to what extent cruciate disease results from abnormal biomechanics on a normal ligament or contrary how far preliminary alterations of the ligament due to biochemical factors provoke abnormal biomechanics. This study is focused on nitric oxide (NO), one of the potential biochemical factors. The NO-donor sodium nitroprusside (SNP) has been used to study NO-dependent cell death in canine cranial and caudal cruciate ligament cells and to characterize signaling mechanisms during NO-stimulation. RESULTS: Sodium nitroprusside increased apoptotic cell death dose- and time-dependently in cruciate ligamentocytes. Cells from the CCL were more susceptible to apoptosis than CaCL cells. Caspase-3 processing in response to SNP was not detected. Testing major upstream and signal transducing pathways, NO-induced cruciate ligament cell death seemed to be mediated on different levels. Specific inhibition of tyrosine kinase significantly decreased SNP-induced cell death. Mitogen activated protein kinase ERK1 and 2 are activated upon NO and provide anti-apoptotic signals whereas p38 kinase and protein kinase C are not involved. Moreover, data showed that the inhibition reactive oxygen species (ROS) significantly reduced the level of cruciate ligament cell death. CONCLUSIONS: Our data support the hypothesis that canine cruciate ligamentocytes, independently from their origin (CCL or CaCL) follow crucial signaling pathways involved in NO-induced cell death. However, the difference on susceptibility upon NO-mediated apoptosis seems to be dependent on other pathways than on these tested in the present study. In both, CCL and CaCL, the activation of the tyrosine kinase and the generation of ROS reveal important signaling pathways. In perspective, new efforts to prevent the development and progression of cruciate disease may include strategies aimed at reducing ROS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Viral invasion of the central nervous system (CNS) and development of neurological symptoms is a characteristic of many retroviruses. The mechanism by which retrovirus infection causes neurological dysfunction has yet to be fully elucidated. Given the complexity of the retrovirus-mediated neuropathogenesis, studies using small animal models are extremely valuable. Our laboratory has used a mutant moloney murine leukemia retrovirus, ts1-mediated neurodegneration. We hypothesize that astrocytes play an important role in ts1-induced neurodegeneration since they are retroviral reservoirs and supporting cells for neurons. It has been shown that ts1 is able to infect astrocytes in vivo and in vitro. Astrocytes, the dominant cell population in the CNS, extend their end feet to endothelial cells and neuronal synapse to provide neuronal support. Signs of oxidative stress in the ts1-infected CNS have been well-documented from previous studies. After viral infection, retroviral DNA is generated from its RNA genome and integrated into the host genome. In this study, we identified the life cycle of ts1 in the infected astrocytes. During the infection, we observed reactive oxygen species (ROS) upregulations: one at low levels during the early infection phase and another at high levels during the late infection phase. Initially we hypothesized that p53 might play an important role in ts1-mediated astrocytic cell death. Subsequently, we found that p53 is unlikely to be involved in the ts1-mediated astrocytic cell death. Instead, p53 phosphorylation was increased by the early ROS upregulation via ATM, the protein encoded by the ataxia-telangiectasia (A-T) mutated gene. The early upregulation of p53 delayed viral gene expression by suppressing expression of the catalytic subunit of NADPH oxidase (NOX). We further demonstrated that the ROS upregulation induced by NOX activation plays an important role in establishing retroviral genome into the host. Inhibition of NOX decreased viral replication and delayed the onset of pathological symptoms in ts1-infected mice. These observations lead us to conclude that suppression of NOX not only prevents the establishment of the retrovirus but also decreases oxidative stress in the CNS. This study provides us with new perspectives on the retrovirus-host cell interaction and sheds light on retrovirus-induced neurodegeneration as a result of the astrocyte-neuron interaction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

4HPR is a synthetic retinoid that has shown chemopreventive and therapeutic efficacy against premalignant and malignant lesions including oral leukoplakia, ovarian and breast cancer, and neuroblastoma. 4HPR induces apoptosis in various cancer cells and production of reactive oxygen species (ROS) has been suggested as a possible cause underlying these effects. However, the mechanisms governing these effects by 4HPR are not fully elucidated. In this study, we explored the mechanisms of 4HPR-induced ROS increase and apoptosis in human cancer cells. ^ First, we identified genes modulated by 4HPR using oligonucleotide gene expression arrays and found that they fall into specific functional canonical pathways and gene networks using Ingenuity Pathways Analysis®. Further analysis has shown that 4HPR induced up-regulation of Endoplasmic Reticulum (ER)-related genes such as Heat shock proteins 70 and 90 and the transcriptional factor, GADD153. These findings were validated using quantitative real-time PCR. ^ Second, we found that 4HPR induced extensive ER stress evidenced by dilation of the ER and endoribonuclease-mediated splicing and activation of the transcriptional factor, XBP-1. In addition, 4HPR induced the up-regulation of various ER stress-related genes and their protein products, as well as cleavage and activation of the ER specific Caspase-4. Concomitantly with XBP-1 splicing, all of these effects were dependent on ROS generation by 4HPR. Furthermore, chemical inhibition and RNA interference studies revealed a novel pro-apoptotic role for HSP70/A1A in 4HPR-mediated apoptosis. ^ Third, we observed rapid activation of the small GTPase Rac by 4HPR which was upstream of ROS generation. Inhibition of Rac activity or silencing of its expression by RNA interference inhibited ROS generation and apoptosis induction by 4HPR. siRNA targeting PAK1 and expression of a dominant negative Rac, decreased 4HPR-mediated ROS generation, while expression of a constitutive active Rac increased basal and 4HPR-induced ROS generation and PARP cleavage. Furthermore, metastatic cancer cells exhibited higher Rac activation, ROS generation, and cell growth inhibition due to 4HPR exposure compared to their primary cancer cell counterparts. ^ These findings provide novel insights into 4HPR-mediated ROS generation and apoptosis induction and support the use of ROS inducing agents such as 4HPR against metastatic cancer cells. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Arsenic trioxide (ATO) is an inorganic arsenic derivative that is very effective against relapsed acute promyelocytic leukemia. It is being investigated as therapy for other cancers, but the risk/benefit ratio is questionable due to significant side effects. In contrast, organic arsenic derivatives (OAD) are known to be much less toxic than ATO. Based on high activity, we selected GMZ27 (dipropil-s-glycerol arsenic) for further study and have confirmed its potent activity against human acute leukemia cell lines. This anti-leukemic activity is significantly higher than that of ATO. Both in vivo and in vitro tests have shown that GMZ27 is significantly less toxic to normal bone marrow mononuclear cells and normal mice. Therefore, further study of the biological activity of GMZ27 was undertaken. ^ GMZ27, in contrast to ATO, can only marginally induce maturation of leukemic cells. GMZ27 has no effect on cell cycle. The anti-leukemic activity of GMZ27 against acute myeolocytic leukemia cells is not dependent upon degradation of PML-RARα fusion protein. GMZ27 causes dissipation of mitochondrial transmembrane potential, cleavage of caspase 9, caspase 3 activation. Further studies indicated that GMZ27 induces intracellular reactive oxygen species (ROS) production, and modification of intracellular ROS levels had profound effect on its potential to inhibit proliferation of leukemic cells. Therefore ROS production plays a major role in the anti-leukemic activity of GMZ27. ^ To identify how GMZ27 induces ROS, our studies focused on mitochondria and NADPH oxidase. The results indicated that the source of ROS generation induced by GMZ27 is dose dependent. At the low dose (0.3 uM) GMZ27 induces NADPH oxidase activity that leads to late ROS production, while at the high dose (2.0 uM) mitochondria function is disrupted and early ROS production is induced leading to dramatic cell apoptosis. Therefore, late, ROS production can be detected in mitochondria are depleted Rho-0 cells. Our work not only delineates a major biologic pathway for the anti-leukemic activity of GMZ27, but also discusses possible ways of enhancing the effect by the co-application of NADPH oxidase activator. Further study of this interaction may lead to achieving better therapeutic index.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glioblastoma multiforme (GBM) is the most common and aggressive primary brain tumor with poor prognosis due in part to drug resistance and high incidence of tumor recurrence. The drug resistant and cancer recurrence phenotype may be ascribed to the presence of glioblastoma stem cells (GSCs), which seem to reside in special stem-cell niches in vivo and require special culture conditions including certain growth factors and serum-free medium to maintain their stemness in vitro. Exposure of GSCs to fetal bovine serum (FBS) can cause their differentiation, the underlying mechanism of which remains unknown. Reactive oxygen species (ROS) play an important role in normal stem cell differentiation, but their role in affecting cancer stem cell fate remains unclear. Whether the metabolic characteristics of GSCs are different from other glioblastoma cells and can be targeted are also unknown. In this study, we used several stem-like glioblastoma cell lines derived from clinical tissues by typical neurosphere culture system or orthotopic xenografts, and showed that addition of fetal bovine serum to the medium induced an increase of ROS, leading to aberrant differentiation and decreases of stem cell markers such as CD133. We found that exposure of GSCs to serum induced their differentiation through activation of mitochondrial respiration, leading to an increase in superoxide (O2-) generation and a profound ROS stress response manifested by upregulation of oxidative stress response pathway. This increase in mitochondrial ROS led to a down-regulation of molecules including SOX2, and Olig2, and Notch1 that are important for stem cell function and an upregulation of mitochondrial superoxide dismutase SOD2 that converts O2- to H2O2. Neutralization of ROS by antioxidant N-acetyl-cysteine in the serum-treated GSCs suppressed the increase of superoxide and partially rescued the expression of SOX2, Olig2, and Notch1, and prevented the serum-induced differentiation phenotype. Additionally, GSCs showed high dependence on glycolysis for energy production. The combination of a glycolytic inhibitor 3-BrOP and a chemotherapeutic agent BCNU depleted cellular ATP and inhibited the repair of BCNU-induced DNA damage, achieving strikingly synergistic killing effects in drug resistant GSCs. This study uncovers the metabolic properties of glioblastoma stem cells and suggests that mitochondrial function and cellular redox status may profoundly affect the fates of glioblastoma stem cells via a ROS-mediated mechanism, and that the active glycolytic metabolism in cancer stem cells may provide a biochemical basis for developing novel therapeutic strategies to effectively eliminate GSCs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hematopoietic stem cell (HSC) aging has become a concern in chemotherapy of older patients. Humoral and paracrine signals from the bone marrow (BM) hematopoietic microenvironment (HM) control HSC activity during regenerative hematopoiesis. Connexin-43 (Cx43), a connexin constituent of gap junctions (GJs) is expressed in HSCs, down-regulated during differentiation, and postulated to be a self-renewal gene. Our studies, however, reveal that hematopoietic-specific Cx43 deficiency does not result in significant long-term competitive repopulation deficiency. Instead, hematopoietic Cx43 (H-Cx43) deficiency delays hematopoietic recovery after myeloablation with 5-fluorouracil (5-FU). 5-FU-treated H-Cx43-deficient HSC and progenitors (HSC/P) cells display decreased survival and fail to enter the cell cycle to proliferate. Cell cycle quiescence is associated with down-regulation of cyclin D1, up-regulation of the cyclin-dependent kinase inhibitors, p21cip1. and p16INK4a, and Forkhead transcriptional factor 1 (Foxo1), and activation of p38 mitogen-activated protein kinase (MAPK), indicating that H-Cx43-deficient HSCs are prone to senescence. The mechanism of increased senescence in H-Cx43-deficient HSC/P cells depends on their inability to transfer reactive oxygen species (ROS) to the HM, leading to accumulation of ROS within HSCs. In vivo antioxidant administration prevents the defective hematopoietic regeneration, as well as exogenous expression of Cx43 in HSC/P cells. Furthermore, ROS transfer from HSC/P cells to BM stromal cells is also rescued by reexpression of Cx43 in HSC/P. Finally, the deficiency of Cx43 in the HM phenocopies the hematopoietic defect in vivo. These results indicate that Cx43 exerts a protective role and regulates the HSC/P ROS content through ROS transfer to the HM, resulting in HSC protection during stress hematopoietic regeneration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Las NADPH oxidasas de plantas, denominadas “respiratory burst oxidase homologues” (RBOHs), producen especies reactivas del oxígeno (ROS) que median un amplio rango de funciones. En la célula vegetal, el ajuste preciso de la producción de ROS aporta la especificidad de señal para generar una respuesta apropiada ante las amenazas ambientales. RbohD y RbohF, dos de los diez genes Rboh de Arabidopsis, son pleiotrópicos y median diversos procesos fisiológicos en respuesta a patógenos. El control espacio-temporal de la expresión de los genes RbohD y RbohF podría ser un aspecto crítico para determinar la multiplicidad de funciones de estas oxidasas. Por ello, generamos líneas transgénicas de Arabidopsis con fusiones de los promoters de RbohD y RbohF a los genes delatores de la B-glucuronidasa y la luciferasa. Estas líneas fueron empleadas para revelar el patrón de expresión diferencial de RbohD y RbohF durante la respuesta inmune de Arabidopsis a la bacteria patógena Pseudomonas syringae pv. tomato DC3000, el hongo necrótrofo Plectosphaerella cucumerina y en respuesta a señales relacionadas con la respuesta inmune. Nuestros experimentos revelan un patrón de expresión diferencial de los promotores de RbohD y RbohF durante el desarrollo de la planta y en la respuesta inmune de Arabidopsis. Además hemos puesto de manifiesto que existe una correlación entre el nivel de actividad de los promotores de RbohD y RbohF con la acumulación de ROS y el nivel de muerte celular en respuesta a patógenos. La expression de RbohD y RbohF también es modulada de manera diferencial en respuesta a patrones moleculares asociados a patógenos (PAMPs) y por ácido abscísico (ABA). Cabe destacar que, mediante una estrategia de intercambio de promotores, hemos revelado que la región promotora de RbohD, es necesaria para dirigir la producción de ROS en respuesta a P. cucumerina. Adicionalmente, la activación del promotor de RbohD en respuesta al aislado de P. cucumerina no adaptado a Arabidopsis 2127, nos llevó a realizar ensayos de susceptibilidad con el doble mutante rbohD rbohF que han revelado un papel desconocido de estas oxidasas en resistencia no-huesped. La interacción entre la señalización dependiente de las RBOHs y otros componentes de la respuesta inmune de plantas podría explicar también las distintas funciones que median estas oxidasas en relación con la respuesta inmune. Entre la gran cantidad de señales coordinadas con la actividad de las RBOHs, existen evidencias genéticas y farmacológicas que indican que las proteínas G heterotriméricas están implicadas en algunas de las rutas de señalización mediadas por ROS derivadas de los RBOHs en respuesta a señales ambientales. Por ello hemos estudiado la relación entre estas RBOH-NADPH oxidasas y AGB1, la subunidad β de las proteínas G heterotriméricas en la respuesta inmune de Arabidopsis. Análisis de epistasis indican que las proteínas G heterotriméricas están implicadas en distintas rutas de señalización en defensa mediadas por las RBOHs. Nuestros resultados ilustran la relación compleja entre la señalización mediada por las RBOHs y las proteínas G heterotriméricas, que varía en función de la interacción planta-patógeno analizada. Además, hemos explorado la posible asociación entre AGB1 con RBOHD y RBOHF en eventos tempranos de la respuesta immune. Cabe señalar que experimentos de coímmunoprecipitación apuntan a una posible asociación entre AGB1 y la kinasa citoplasmática reguladora de RBOHD, BIK1. Esto indica un posible mecanismo de control de la función de esta NADPH oxidase por AGB1. En conjunto, estos datos aportan nuevas perspectivas sobre cómo, a través del control transcripcional o mediante la interacción con las proteínas G heterotriméricas, las NADPH oxidases de plantas median la producción de ROS y la señalización por ROS en la respuesta inmune. Nuestro trabajo ejemplifica cómo la regulación diferencial de dos miembros de una familia multigénica, les permite realizar distintas funciones fisiológicas especializadas usando un mismo mecanismo enzimático. ABSTRACT The plant NADPH oxidases, termed respiratory burst oxidase homologues (RBOHs), produce reactive oxygen species (ROS) which mediate a wide range of functions. Fine tuning this ROS production provides the signaling specificity to the plant cell to produce the appropriate response to environmental threats. RbohD and RbohF, two of the ten Rboh genes present in Arabidopsis, are pleiotropic and mediate diverse physiological processes in response to pathogens. One aspect that may prove critical to determine the multiplicity of functions of RbohD and RbohF is the spatio-temporal control of their gene expression. Thus, we generated Arabidopsis transgenic lines with RbohD- and RbohF-promoter fusions to the β-glucuronidase and the luciferase reporter genes. These transgenics were employed to reveal RbohD and RbohF promoter activity during Arabidopsis immune response to the pathogenic bacterium Pseudomonas syringae pv tomato DC3000, the necrotrophic fungus Plectosphaerella cucumerina and in response to immunity-related cues. Our experiments revealed a differential expression pattern of RbohD and RbohF throughout plant development and during Arabidopsis immune response. Moreover, we observed a correlation between the level of RbohD and RbohF promoter activity, the accumulation of ROS and the amount of cell death in response to pathogens. RbohD and RbohF gene expression was also differentially modulated by pathogen associated molecular patterns and abscisic acid. Interestingly, a promoter-swap strategy revealed the requirement for the promoter region of RbohD to drive the production of ROS in response to P. cucumerina. Additionally, since the RbohD promoter was activated during Arabidopsis interaction with a non-adapted P. cucumerina isolate 2127, we performed susceptibility tests to this fungal isolate that uncovered a new role of these oxidases on non-host resistance. The interplay between RBOH-dependent signaling with other components of the plant immune response might also explain the different immunity-related functions mediated by these oxidases. Among the plethora of signals coordinated with RBOH activity, pharmacological and genetic evidence indicates that heterotrimeric G proteins are involved in some of the signaling pathways mediated by RBOH–derived ROS in response to environmental cues. Therefore, we analysed the interplay between these RBOH-NADPH oxidases and AGB1, the Arabidopsis β-subunit of heterotrimeric G proteins during Arabidopsis immune response. We carried out epistasis studies that allowed us to test the implication of AGB1 in different RBOH-mediated defense signaling pathways. Our results illustrate the complex relationship between RBOH and heterotrimeric G proteins signaling, that varies depending on the type of plant-pathogen interaction. Furthermore, we tested the potential association between AGB1 with RBOHD and RBOHF during early immunity. Interestingly, our co-immunoprecipitation experiments point towards an association of AGB1 and the RBOHD regulatory kinase BIK1, thus providing a putative mechanism in the control of the NADPH oxidase function by AGB1. Taken all together, these studies provide further insights into the role that transcriptional control or the interaction with heterotrimeric G-proteins have on RBOH-NADPH oxidase-dependent ROS production and signaling in immunity. Our work exemplifies how, through a differential regulation, two members of a multigenic family achieve specialized physiological functions using a common enzymatic mechanism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human ether-a-gogo related gene (HERG) K+ channels are key elements in the control of cell excitability in both the cardiovascular and the central nervous systems. For this reason, the possible modulation by reactive oxygen species (ROS) of HERG and other cloned K+ channels expressed in Xenopus oocytes has been explored in the present study. Exposure of Xenopus oocytes to an extracellular solution containing FeSO4 (25–100 μM) and ascorbic acid (50–200 μM) (Fe/Asc) increased both malondialdehyde content and 2′,7′-dichlorofluorescin fluorescence, two indexes of ROS production. Oocyte perfusion with Fe/Asc caused a 50% increase of the outward K+ currents carried by HERG channels, whereas inward currents were not modified. This ROS-induced increase in HERG outward K+ currents was due to a depolarizing shift of the voltage-dependence of channel inactivation, with no change in channel activation. No effect of Fe/Asc was observed on the expressed K+ currents carried by other K+ channels such as bEAG, rDRK1, and mIRK1. Fe/Asc-induced stimulation of HERG outward currents was completely prevented by perfusion of the oocytes with a ROS scavenger mixture (containing 1,000 units/ml catalase, 200 ng/ml superoxide dismutase, and 2 mM mannitol). Furthermore, the scavenger mixture also was able to reduce HERG outward currents in resting conditions by 30%, an effect mimicked by catalase alone. In conclusion, the present results seem to suggest that changes in ROS production can specifically influence K+ currents carried by the HERG channels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reactive oxygen species (ROS) and nitric oxide (NO) are important participants in signal transduction that could provide the cellular basis for activity-dependent regulation of neuronal excitability. In young rat cortical brain slices and undifferentiated PC12 cells, paired application of depolarization/agonist stimulation and oxidation induces long-lasting potentiation of subsequent Ca2+ signaling that is reversed by hypoxia. This potentiation critically depends on NO production and involves cellular ROS utilization. The ability to develop the Ca2+ signal potentiation is regulated by the developmental stage of nerve tissue, decreasing markedly in adult rat cortical neurons and differentiated PC12 cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reactive oxygen species (ROS) have been implicated as potential modulators of apoptosis. Conversely, experiments under hypoxic conditions have suggested that apoptosis could occur in the absence of ROS. We sought to determine whether a central modulator of apoptosis, p53, regulates the levels of intracellular ROS and whether a rise in ROS levels is required for the induction of p53-dependent apoptosis. We transiently overexpressed wild-type p53, using adenoviral gene transfer, and identified cell types that were sensitive or resistant to p53-mediated apoptosis. Cells sensitive to p53-mediated apoptosis produced ROS concomitantly with p53 overexpression, whereas cells resistant to p53 failed to produce ROS. In sensitive cells, both ROS production and apoptosis were inhibited by antioxidant treatment. These results suggest that p53 acts to regulate the intracellular redox state and induces apoptosis by a pathway that is dependent on ROS production.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: Apoptosis and differentiation are among the consequences of changes in intracellular Ca2+ levels. In this study, we investigated the effects of the endoplasmic reticular Ca2+-ATPase inhibitor, thapsigargin (TG), on osteoclast apoptosis and differentiation. Materials and Methods: Both RAW264.7 cells and primary spleen cells were used to examine the effect of TG on RANKL-induced osteoclastogenesis. To determine the action of TG on signaling pathways, we used reporter gene assays for NF-kappa B and activator protein-1 (AP-1) activity, Western blotting for phosphoextracellular signal-related kinase (ERK), and fluorescent probes to measure changes in levels of intracellular calcium and reactive oxygen species (ROS). To assess rates of apoptosis, we measured changes in annexin staining, caspase-3 activity, and chromatin and F-actin microfilament structure. Results: At concentrations that caused a rapid rise in intracellular Ca2+, TG increased caspase-3 activity and promoted apoptosis in osteoclast-like cells (OLCs). Low concentrations of TG, which were insufficient to measurably alter intracellular Ca2+, unexpectedly suppressed caspase-3 activity and enhanced RANKL-induced osteoclastogenesis. At these lower concentrations, TG potentiated ROS production and RANKL-induced NF-kappa B activity, but suppressed RANKL-induced AP-1 activity and had little effect on ERK phosphorylation. Conclusion: Our novel findings of a biphasic effect of TG are incompletely explained by our current understanding of TG action, but raise the possibility that low intensity or local changes in subcellular Ca2+ levels may regulate intracellular differentiation signaling. The extent of cross-talk between Ca2+ and RANKL-mediated intracellular signaling pathways might be important in determining whether cells undergo apoptosis or differentiate into OLCs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

IgG can be denatured in vitro by reactive oxygen species (ROS). Native IgG activates the complement cascade through C1q. Using a modified ELISA, C1q binding activity of rheumatoid IgG has been compared to IgG denatured by neutrophil-derived ROS. The C1q binding activity of rheumatoid synovial fluid IgG is greater than the corresponding serum IgG (P < 0.01). Denaturation of IgG by activated polymorphs or the Fenton reaction decreased its C1q binding activity (P < 0.01). In vitro exposure of IgG to OH. and ROO. increased its interaction with C1q (P < 0.01). Hypochlorous acid had no effect. ROS-induced alteration to IgG-C1q binding activity may promote the inflammatory response in rheumatoid arthritis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reactive oxygen species (ROS) are released at sites of inflammation during the respiratory burst which accompanies the phagocytic process. Using an in vitro system to simulate this process we have shown that ROS induce antigenic changes in DNA. More specifically, results of experiments using ROS scavengers have shown that hydroxyl radicals produced in close proximity to DNA-bound metal ions play a predominant role. ROS-mediated attack resulted in increased binding of anti-DNA antibodies to the denatured DNA. These changes were detected using IgG, IgA and IgM isotype binding to antibodies in systemic lupus erythematosus sera. Of these the IgA isotype was most discriminating in its detection of hydroxyl radical-induced damage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1. The mechanism of action by which methotrexate (MTX) exerts its anti-inflammatory and immunosuppressive effects remains unclear. The aim of this study is to investigate the hypothesis that MTX exerts these effects via the production of reactive oxygen species (ROS). 2. Addition of MTX (100 nM-10 μM) to U937 monocytes induced a time and dose dependent increase in cytosolic peroxide [peroxide] cyt from 6-16 h. MTX also caused corresponding monocyte growth arrest, which was inhibited (P<0.05) by pre-treatment with N-acetylcysteine (NAC; 10 mM) or glutathione (GSH; 10 mM). In contrast, MTX induction of [peroxide] cyt in Jurkat T cells was more rapid (4 h; P<0.05), but was associated with significant apoptosis at 16 h at all doses tested (P<0.05) and was significantly inhibited by NAC or GSH (P<0.05). 3. MTX treatment of monocytes (10 nM-10 μM) for 16 h significantly reduced total GSH levels (P<0.05) independently of dose (P>0.05). However in T-cells, GSH levels were significantly elevated following 30 nM MTX treatment (P<0.05) but reduced by doses exceeding 1 μM compared to controls (P<0.05). 4. MTX treatment significantly reduced monocyte adhesion to 5 h and 24 h LPS (1 μg ml -1) activated human umbilical vein endothelial cells (HUVEC; P<0.05) but not to resting HUVEC. Pre-treatment with GSH prevented MTX-induced reduction in adhesion. 5. In conclusion, ROS generation by MTX is important for cytostasis in monocytes and cytotoxicity T-cells. Furthermore, MTX caused a reduction in monocyte adhesion to endothelial cells, where the mechanism of MTX action requires the production of ROS. Therefore its clinical efficacy can be attributed to multiple targets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aims: Pulmonary arterial hypertension [1] is a proliferative disorder associated with enhanced proliferation and suppressed apoptosis of pulmonary artery smooth muscle cells (PASMCs). Reactive oxygen species (ROS) is implicated in the development of PAH and regulates the vascular tone and functions. However, which cellular signaling mechanisms are triggered by ROS in PAH is still unknown. Hence, here we wished to characterize the signaling mechanisms triggered by ROS. Methods and Results: By Western blots, we showed that increased intracellular ROS caused inhibition of the glycolytic pyruvate kinase M2 (PKM2) activity through promoting the phosphorylation of PKM2. Monocrotaline (MCT)-induced rats developed severe PAH and right ventricular hypertrophy, with a significant increase in the P-PKM2 and decrease in pyruvate kinase activity which could be attenuated with the treatments of PKM2 activators, FBP and l-serine. The antioxidant NAC, apocynin and MnTBAP had the similar protective effects in the development of PAH. In vitro assays confirmed that inhibition of PKM2 activity could modulate the flux of glycolytic intermediates in support of cell proliferation through the increased pentose phosphate pathway (PPP). Increased ROS and decreased PKM2 activity also promoted the Cav1.2 expression and intracellular calcium. Conclusion: Our data provide new evidence that PKM2 makes a critical regulatory contribution to the PAHs for the first time. Decreased pyruvate kinase M2 activity confers additional advantages to rat PASMCs by allowing them to sustain anti-oxidant responses and thereby support cell survival in PAH. It may become a novel treatment strategy in PAH by using of PKM2 activators.