126 resultados para Pharmacodynamics


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two antineoplastic agents, Imatinib (IM) and 5-Fluorouracil (FU) were conjugated by hydrolysable linkers through an amide bond and entrapped in polymeric Human Serum Albumin (HSA) nanoparticles. The presence of dual drugs in a common carrier has the advantage of reaching the site of action simultaneously and acting at different phases of the cell cycle to arrest the growth of cancer cells before they develop chemoresistance. The study has demonstrated an enhanced anticancer activity of the conjugate, and conjugate loaded stealth HSA nanoparticles (NPs) in comparison to the free drug in A-549 human lung carcinoma cell line and Zebra fish embryos (Danio rerio). Hydrolysability of the conjugate has also been demonstrated with complete hydrolysis being observed after 12 h. In vivo pharmacodynamics study in terms of tumor volume and pharmacokinetics in mice for conjugate (IM-SC-FU) and conjugate loaded nanoparticles showed significant anti-cancer activity. The other parameters evaluated were particle size (86nm), Poly Dispersive Index (PDI) (0.209), zeta potential (-49mV), drug entrapment efficiency (96.73%) and drug loading efficiency (89%). Being in stealth mode gives the potential for the NPs to evade Reticulo-Endothelial system (RES), achieve passive targeting by Enhanced Permeation Retention (EPR) effect with controlled release of the therapeutic agent. As the conjugate cleaves into individual drugs in the tumor environment, this promises better suppression of cancer chemoresistance by delivering dual drugs with different modes of action at the same site, thereby synergistically inhibiting the growth of cancerous tissue.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The application of principles from evolutionary biology has long been used to gain new insights into the progression and clinical control of both infectious diseases and neoplasms. This iterative evolutionary process consists of expansion, diversification and selection within an adaptive landscape - species are subject to random genetic or epigenetic alterations that result in variations; genetic information is inherited through asexual reproduction and strong selective pressures such as therapeutic intervention can lead to the adaptation and expansion of resistant variants. These principles lie at the center of modern evolutionary synthesis and constitute the primary reasons for the development of resistance and therapeutic failure, but also provide a framework that allows for more effective control.

A model system for studying the evolution of resistance and control of therapeutic failure is the treatment of chronic HIV-1 infection by broadly neutralizing antibody (bNAb) therapy. A relatively recent discovery is that a minority of HIV-infected individuals can produce broadly neutralizing antibodies, that is, antibodies that inhibit infection by many strains of HIV. Passive transfer of human antibodies for the prevention and treatment of HIV-1 infection is increasingly being considered as an alternative to a conventional vaccine. However, recent evolution studies have uncovered that antibody treatment can exert selective pressure on virus that results in the rapid evolution of resistance. In certain cases, complete resistance to an antibody is conferred with a single amino acid substitution on the viral envelope of HIV.

The challenges in uncovering resistance mechanisms and designing effective combination strategies to control evolutionary processes and prevent therapeutic failure apply more broadly. We are motivated by two questions: Can we predict the evolution to resistance by characterizing genetic alterations that contribute to modified phenotypic fitness? Given an evolutionary landscape and a set of candidate therapies, can we computationally synthesize treatment strategies that control evolution to resistance?

To address the first question, we propose a mathematical framework to reason about evolutionary dynamics of HIV from computationally derived Gibbs energy fitness landscapes -- expanding the theoretical concept of an evolutionary landscape originally conceived by Sewall Wright to a computable, quantifiable, multidimensional, structurally defined fitness surface upon which to study complex HIV evolutionary outcomes.

To design combination treatment strategies that control evolution to resistance, we propose a methodology that solves for optimal combinations and concentrations of candidate therapies, and allows for the ability to quantifiably explore tradeoffs in treatment design, such as limiting the number of candidate therapies in the combination, dosage constraints and robustness to error. Our algorithm is based on the application of recent results in optimal control to an HIV evolutionary dynamics model and is constructed from experimentally derived antibody resistant phenotypes and their single antibody pharmacodynamics. This method represents a first step towards integrating principled engineering techniques with an experimentally based mathematical model in the rational design of combination treatment strategies and offers predictive understanding of the effects of combination therapies of evolutionary dynamics and resistance of HIV. Preliminary in vitro studies suggest that the combination antibody therapies predicted by our algorithm can neutralize heterogeneous viral populations despite containing resistant mutations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

何首乌为常用中药,由何首乌及含何首乌的中成药制剂所引起的不良反应也时见报道,科学阐明不良反应的物质基础并提出解决方案对何首乌的使用十分重要。本论文研究了何首乌炮制前后KM小鼠肝脏毒性基因表达谱、生物活性及化学成分的变化。所获结果支持何首乌炮制的目的是减毒、改性(改变药效),何首乌生、熟异治的观点。制首乌对抑郁症的效果显著优于生首乌,这与本草所记载的何首乌炮制后补肝肾、益精血,归肝、肾经一致。 主要结果如下: 1、 生、制首乌的毒理基因芯片研究结果 何首乌的不良反应主要表现在肝损害方面。本研究建立了生何首乌和制何首乌不同剂量的肝毒性作用模型,体重指标统计发现生何首乌各剂量组平均体重显著下降,中剂量组(10 g/kg.d)体重下降20 %,高剂量组(20 g/kg.d)体重下降42%,50%动物死亡,提示动物机体能量代谢障碍;基因芯片研究结果表明何首乌是CYP450的抑制剂,生何首乌相对于制何首乌CYP3A4、CYP4A5显著下调,导致毒性成分在体内的吸收增加,服用大剂量的生何首乌后产生明显的肝毒性;主要对以下六条Pathway产生影响:①PPAR signaling pathway,主要毒性靶基因有RXRB CYP7a1、Acadl、Apoa2、Cyp4a、 FABP2 、MAPKKK5等基因。②Calcium signaling pathway,主要毒性靶基因有CAMK2B、CACNA1F、S100A1、 F2R、Ryr1、Slc8a2、Camk4 ③Neuroactive ligand-receptor interaction,主要毒性靶基因有Chrm4、 Ntsr2 、 GABRR1、 GRIK3、F2R等基因。④Wnt signaling pathway,主要毒性靶基因有Daam2、Rac1 等基因。⑤Complement and coagulation cascades,主要毒性靶基因有F2R、Serpina1b、Cfi 、FGA等基因。⑥Oxidative hosphorylation,主要毒性靶基因有Atp5e、NDUFA1等基因。生何首乌毒性明显强于制首乌,且生何首乌水煎液的毒性大于生何乌首丙酮提取物的毒性,这一结果表明,何首乌主要的毒性成分很可能并不仅仅是传统所认为的以大黄素为代表的蒽醌类化合物,而是何首乌中大量存在的有效组分二苯乙烯苷与大黄素相互作用的结果,这一研究结果与前述的何首乌对肝药酶的影响是一致的。后续生、制首乌的化学成分差异研究表明,炮制后二苯乙烯苷含量明显降低:生首乌为5.512 %、清蒸制首乌为3.811 %、豆制首乌为3.538 %,大黄素的含量炮制后显著升高,生首乌为0.094 %、清蒸制首乌为0.119 %、豆制首乌为0.126 %。 2 生、制首乌药效差异研究结果 本文采用慢性中等强度不可预知应激刺激模型(chronic unpredictable mild stress, CUMS)和动物行为绝望实验法,研究生、制首乌抗抑郁活性的差异,制首乌(5 g/kg.d)与模型组相比有显著差异(P< 0.01),生首乌制首乌(5g/kg.d)与模型组相比无显著差异,这一结果表明制首乌抗抑郁活性显著优于生首乌。 本文比较了生、制首乌对四氧嘧啶糖尿病模型小鼠血糖的影响的差异,生首乌(5 g/kg.d)与模型组相比有显著差异(P< 0.01),制首乌(5 g/kg.d)与模型组相比无显著差异,这一结果表明生首乌降糖活性优于制首乌。这一结果与历代中医古书中生首乌治疗消渴症(糖尿病)的记载一致。 3生、制首乌化学成分差异的研究结果 本文选用HPLC-DAD指纹图谱技术结合药效成分含量测定来研究生、制首乌化学成分的差异。炮制后,何首乌中的主要化学成分并未消失,只是其含量发生了改变。炮制后二苯乙烯苷含量明显降低:生首乌为5.512 %、清蒸制首乌为3.811 %、豆制首乌为3.538 %,大黄素的含量炮制后显著升高,生首乌为0.094 %、清蒸制首乌为0.119 %、豆制首乌为0.126 %。 综上所述,炮制前后何首乌中二苯乙烯苷和大黄素含量比的变化可能是何首乌炮制减毒、改性的物质基础。 根据上述结果我们建立了生、制首乌的质量控制新模式。 In recent years, some adverse drug reactions (ADR) about some traditional Chinese medicine were reported at times. As a Chinese medicine most in use, the ADRs of Radix Polygoni multiflori (RPM) and the medicines containing the RPM were also mentioned. The resolution of the problems caused by the ADRs is very important for the use of the RPM as a medicine. The process (or preparation) is a significant feature for the clinical use of the Chinese medicine and an important technology for the safe use and good effect of the Chinese medicine. By processing, the toxicity of the Chinese medicine can be reduced, its properties can be changed and curative effect can be enhanced at the same time. The changes of the gene expression profiles for KM mice hepatotoxic effects, and the change of the biological activity and the chemical composition after being processed of the RPm were studied in the present dissertation. The RPm heatotoxicity mechanism and the toxicity target genes were explained on the gene level for the first time. With the antidepressant activity, and the hypoglycemic effect as the target, the differences on the pharmacodynamics between the processed RPm and unprocessed RPm, for the first time, were investigated. The results obtained show that the antidepressant activity of the processed RPM is far higher than the ones of unprocessed RPm. As we know, the results were reported for the first time. The quality control systems (QCS) for the processed and the unprocessed RPm were founded. The HPLC-DAD was used in the systems founded on the basis of the toxicology and the pharmacodynamics experiments. As we know, the OCSs were reported for the first time. The above-mentioned experimental results confirm that the unique process theory of the traditional Chinese medicine (TCM) used for the process of the Radix Polygoni multiflori (RPm) is correct, i.e after being processed the toxicity of the RPm decreases and its Pharmacodynamic effects change. It is known to author that there have been no similar reports in the literatures up to now. The main experimental results are summarized as follows: 1 The results on the mice toxicology gene chip for the unprocessed and processed RPm The KM mice hepatotoxic model caused by the RPm at the different dosages was established in the present study. The results obtained show that the mouse average body weight obviously decreased in the groups at the different dosages of the unprocessed RPm: the 10 g/kg.d .group decreased 20%; 20 g/kg.d. group decreased 42%, and 50% mice died at 20 g/kg.d. group. The main experimental results on the mice toxicology gene chip The RPm is the CYP450 inhibitor. As compared with the processd RPm, the CYP3A4, CYP4A5 of the unprocessed RPm demonstrate the marked downregulation, which leads to the increase of the poison absorbtion into the body with the result that the unprocessed RPm yields the marked hepatotoxication. The hepatotoxication was produced because the following 6 pathways were affected: ①PPAR signaling pathway, the chief toxicity target genes are RXRB, CYP7a1, Acadl, Apoa2, Cyp4a, FABP2 and MAPKKK5 etc. ②Calcium signaling pathway, the chief toxicity target genes are CAMK2B, CACNA1F, S100A1, F2R, Ryr1,Slc8a2 and Camk4 etc. ③Neuroactive ligand-receptor interaction, the chief toxicity target genes are Chrm4, Ntsr2, GABRR1, GRIK3 and F2R etc. ④Wnt signaling pathway, the chief toxicity target genes are Daam2, Rac1 etc. ⑤Complement and coagulation cascades, the chief toxicity target genes are F2R, Serpina1b, Cfi and FGA etc. ⑥Oxidative phosphorylation, the chief toxicity target genes are Atp5e, NDUFA1 etc. The above experimental results, for the first time , demonstrate on the gene level that the unprocessed Rpm toxicity is far stronger than the processed RPm one, and the toxicity of the water decoction of the unprocessed RPm is greater than the one of its acetone extracts, which shows that the chief toxicity components of the RPm are probably not only the anthraquinones, for example, the emodin, but the complex compounds produced by the interaction between the emondin and the stilbene glucoside which is the largest component of the unprocessed RPm. The result is accordance with the above effect of the RPm on the hepatic drugenzyme. Aftter being processed, in fact, the content of the stibene glucoside in the RPm markedly decreases. 2. The results on the pharmacodynamic differences between the unprocessed and processed RPm The results obtained show that the effects of processing on RPm pharmacodynamic behaviour received in the Chinese Material Medica are correct. It is known to author that this is the first experimental result in the research materials now available. The chief results are as follows: For the treatment of the antidepressant, the curative effect of the processed RPm is far better than the one of the unprocessed RPm. By contrast with the above results, the hypoblycemic effect of the unprocessed RPm is better than the one of the processed RPm. 3. The results on the Chemical Composition The results obtained by using HPLC-DAD fingerprint and by the determination of effective component content show that the main chemical components in the RPm after being processed do not disappear, but their contents change. The contents of the stilbene glucoside (SG) and emodin in the different samples were determined as follows: SG contents 5.512 % for the unprocessed RPm 3.811 % for the processed RPm (Steamed) 3.588 % for the processed RPm (black soybean) Emodin contents 0.094 % for the unprocessed RPm 0.119 % for the processed RPm (Steamed) 0.126 % for the processed RPm (black soybean) The combination of above experimental results on the toxicity, the pharmacodynamics and the chemical composition indicates that the changes of the content ratio of SG/emodin may be the substance base of the toxicity decrease and pharmacodynamic changes of the RPM by the processing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Projeto de Pós-Graduação/Dissertação apresentado à Universidade Fernando Pessoa como parte dos requisitos para obtenção do grau de Mestre em Ciências Farmacêuticas

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Projeto de Pós-Graduação/Dissertação apresentado à Universidade Fernando Pessoa como parte dos requisitos para obtenção do grau de Mestre em Ciências Farmacêuticas

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The binding of drugs to plasma proteins – especially serum albumin – is an important factor in controlling the availability and distribution of these drugs. In this study we have investigated the binding of two drugs commonly used to treat liver fluke infections, albendazole (ABZ) and triclabendazole (TCBZ), and their sulphoxide metabolites to bovine serum albumin (BSA). Both ABZ and TCBZ caused shifts in the mobility of BSA in native gel electrophoresis. No such changes were observed with the sulphoxides under identical conditions. The drugs, and their sulphoxides, caused quenching of the intrinsic tryptophan fluorescence of BSA, indicating association between the drugs and this protein. Quantification of this quenching suggested a 5–10-fold reduction in affinity of the sulphoxides compared to the parent compounds. These results are discussed in respect to previous work on the pharmacodynamics of these fasciolicides and will inform the design of novel anthelmintics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Direct pharmacological targeting of the anti-apoptotic B-cell lymphoma-2 (BCL-2) family is an attractive therapeutic strategy for treating cancer. Obatoclax is a pan-BCL-2 family inhibitor currently in clinical development. Here we show that, although obatoclax can induce mitochondrial apoptosis dependent on BCL-2 associated x protein/BCL-2 antagonist killer (BAX/BAK) consistent with its on-target pharmacodynamics, simultaneous silencing of both BAX and BAK did not abolish acute toxicity or loss of clonogenicity. This is despite complete inhibition of apoptosis. Obatoclax dramatically reduced viability without inducing loss of plasma membrane integrity. This was associated with rapid processing of light chain-3 (LC3) and reduction of S6 kinase phosphorylation, consistent with autophagy. Dramatic ultrastructural vacuolation, not typical of autophagy, was also induced. Silencing of beclin-1 failed to prevent LC3 processing, whereas knockout of autophagy-related (Atg) 7 abolished LC3 processing but failed to prevent obatoclax-induced loss of clonogenicity or ultrastructural changes. siRNA silencing of Atg7 in BAX/BAK knockout mouse embryonic fibroblasts did not prevent obatoclax-induced loss of viability. Cells selected for obatoclax resistance evaded apoptosis independent of changes in BCL-2 family expression and displayed reduced LC3 processing. In summary, obatoclax exhibits BAX- and BAK-dependent and -independent mechanisms of toxicity and activation of autophagy. Mechanisms other than autophagy and apoptosis are blocked in obatoclax resistant cells and contribute significantly to obatoclax's anticancer efficacy. Cell Death and Disease (2010) 1, e108; doi:10.1038/cddis.2010.86; published online 16 December 2010

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study we compared the pharmacokinetics and pharmacodynamics of captopril after sublingual and peroral administration. Single 25 mg doses of captopril were administered sublingually and perorally on two different occasions in a randomised cross-over fashion to eight healthy volunteers aged 22-35 years. The kinetics of unchanged captopril, plasma renin activity (PRA), BP and heart rate were studied over three hours after both peroral and sublingual administration of captopril.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: poly(ADP ribose) polymerase inhibition has been shown to potentiate the cytotoxicity of DNA damaging agents. A phase I study of rucaparib and temozolomide showed that full-dose temozolomide could be given during PARP inhibition. We report the results of a phase II study of intravenous rucaparib 12 mg/m(2) and oral temozolomide 200 mg/m(2) on days 1-5 every 28 days in patients with advanced metastatic melanoma. METHODS: Patients with chemotherapy naïve measurable metastatic melanoma, performance status =2 and good end-organ function were recruited. Treatment was given until progression. A two stage phase II design was used, with response rate the primary endpoint. Population pharmacokinetics and pharmacodynamics were also explored. RESULTS: Forty-six patients were recruited with 37 patients receiving at least 2 cycles and 17 patients at least 6 cycles. Myelosuppression occurred with 25 patients (54 %) requiring a 25 % dose reduction in temozolomide. The response rate was 17.4 %, median time to progression 3.5 months, median overall survival 9.9 months, and 36 % of patients were progression-free at 6 months. CONCLUSIONS: This study showed that temozolomide (150-200 mg/m(2)/day) can safely be given with a PARP inhibitory dose of rucaparib, increasing progression-free survival over historical controls in metastatic melanoma patients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Antibiotic dosing in neonates varies between countries and centres, suggesting suboptimal exposures for some neonates. We aimed to describe variations and factors influencing the variability in the dosing of frequently used antibiotics in European NICUs to help define strategies for improvement.

METHODS: A sub-analysis of the European Study of Neonatal Exposure to Excipients point prevalence study was undertaken. Demographic data of neonates receiving any antibiotic on the study day within one of three two-week periods from January to June 2012, the dose, dosing interval and route of administration of each prescription were recorded. The British National Formulary for Children (BNFC) and Neofax were used as reference sources. Risk factors for deviations exceeding ±25% of the relevant BNFC dosage recommendation were identified by multivariate logistic regression analysis.

RESULTS: In 89 NICUs from 21 countries, 586 antibiotic prescriptions for 342 infants were reported. The twelve most frequently used antibiotics - gentamicin, penicillin G, ampicillin, vancomycin, amikacin, cefotaxime, ceftazidime, meropenem, amoxicillin, metronidazole, teicoplanin and flucloxacillin - covered 92% of systemic prescriptions. Glycopeptide class, GA <32 weeks, 5(th) minute Apgar score <5 and geographical region were associated with deviation from the BNFC dosage recommendation. While the doses of penicillins exceeded recommendations, antibiotics with safety concerns followed (gentamicin) or were dosed below (vancomycin) recommendations.

CONCLUSIONS: The current lack of compliance with existing dosing recommendations for neonates needs to be overcome through the conduct of well-designed clinical trials with a limited number of antibiotics to define pharmacokinetics/pharmacodynamics, efficacy and safety in this population and by efficient dissemination of the results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pancreatic adenocarcinoma is the fourth leading cause of cancer death and has an extremely poor prognosis: The 5-year survival probability is less than 5% for all stages. The only chance for cure or longer survival is surgical resection; however, only 10% to 20% of patients have resectable disease. Although surgical techniques have improved, most who undergo complete resection experience a recurrence. Adjuvant systemic therapy reduces the recurrence rate and improves outcomes. There is a potential role for radiation therapy as part of treatment for locally advanced disease, although its use in both the adjuvant and neoadjuvant settings remains controversial. Palliative systemic treatment is the only option for patients with metastatic disease. To date, however, only the gemcitabine plus erlotinib combination, and recently the FOLFIRINOX regimen, have been associated with relatively small but statistically significant improvements in OS when compared directly with gemcitabine alone. Although several meta-analyses have suggested a benefit associated with combination chemotherapy, whether this benefit is clinically meaningful remains unclear, particularly in light of the enhanced toxicity associated with combination regimens. There is growing evidence that the exceptionally poor prognosis in PC is caused by the tumor's characteristic abundant desmoplastic stroma that plays a critical role in tumor cell growth, invasion, metastasis, and chemoresistance. Carefully designed clinical trials that include translational analysis will provide a better understanding of the tumor biology and its relation to the host stromal cells. Future directions will involve testing of new targeted agents, understanding the pharmacodynamics of our current targeted agents, searching for predictive and prognostic biomarkers, and exploring the efficacy of different combinations strategies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: RAS is mutated (RASMT) in ~55% of mCRC, and phase III studies have shown that patients harbouring RAS mutations do not benefit from anti-EGFR MoAbs. In addition, ~50% of RAS Wild Type (RASWT) will not benefit from the addition of an EGFR MoAb to standard chemotherapy. Hence, novel treatment strategies are urgently needed for RASMT and > 50% of RASWT mCRC patients. c-MET is overexpressed in ~50-60%, amplified in ~2-3% and mutated in ~3-5% of mCRC. Recent preclinical studies have shown that c-MET is an important mediator of resistance to MEK inhibitors (i) in RASMT mCRC, and that combined MEKi/METi resulted in synergistic reduction in tumour growth in RASMT xenograft models (1). A number of recent studies have highlighted the role of c-MET in mediating primary/secondary resistance to anti-EGFR MoAbs in mCRC, suggesting that patient with RASWT tumours with aberrant c-MET (RASWT/c-MET+) may benefit from anti-c-MET targeted therapies (2). These preclinical data supported the further clinical evaluation of combined MEKi/METi treatment in RASMT and RASWT CRC patients with aberrant c-MET signalling (overexpression, amplification or mutation; RASWT/c-MET+). Methods: MErCuRIC1 is a phase I combination study of METi crizotinib with MEKi PD-0325901. The dose escalation phase, utilizing a rolling six design, recruits 12-24 patients with advanced solid tumours and aims to assess safety/toxicity of combination, recommended phase II (RPII) dose, pharmacokinetics (PK) and pharmacodynamics (PD) (pERK1/2 in PBMC and tumour; soluble c-MET). In the dose expansion phase an additional 30-42 RASMT and RASWT/c-MET mCRC patients with biopsiable disease will be treated at the RPII dose to further evaluate safety, PK, PD and treatment response. In the dose expansion phase additional biopsy and blood samples will be obtained to define mechanisms of response/resistance to crizotinib/PD-0325901 therapy. Enrolment into the dose escalation phase began in December 2014 with cohort 1 still ongoing. EudraCT registry number: 2014-000463-40. (1) Van Schaeybroeck S et al. Cell Reports 2014;7(6):1940-55; (2) Bardelli A et al. Cancer Discov 2013;3(6):658-73. Clinical trial information: 2014-000463-40.