484 resultados para PNIPAAM HYDROGELS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mechanically robust and biomimicking scaffolds are needed for structural engineering of tissues such as the intervertebral disc, which are prone to failure and incapable of natural healing. Here, the formation of thick, randomly aligned polycaprolactone electrospun fibre structures infiltrated with alginate is reported. The composites are characterised using both indentation and tensile testing and demonstrate substantially different tensile and compressive moduli. The composites are mechanically robust and exhibit large strains-to-failure, exhibiting toughening mechanisms observed in other composite material systems. The method presented here provides a way to create large-scale biomimetic scaffolds that more closely mimic the composite structure of natural tissue, with tuneable tensile and compressive properties via the fibre and matrix phases, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mechanically robust and biomimicking scaffolds are needed for structural engineering of tissues such as the intervertebral disc, which are prone to failure and incapable of natural healing. Here, the formation of thick, randomly aligned polycaprolactone electrospun fibre structures infiltrated with alginate is reported. The composites are characterised using both indentation and tensile testing and demonstrate substantially different tensile and compressive moduli. The composites are mechanically robust and exhibit large strains-to-failure, exhibiting toughening mechanisms observed in other composite material systems. The method presented here provides a way to create large-scale biomimetic scaffolds that more closely mimic the composite structure of natural tissue, with tuneable tensile and compressive properties via the fibre and matrix phases, respectively. © 2014 Springer Science+Business Media New York.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydrogels, three-dimensional hydrophilic polymer networks, are appealing candidate materials for studying the cellular microenvironment as their substantial water content helps to better mimic soft tissue. However, hydrogels can lack mechanical stiffness, strength, and toughness. Composite hydrogel systems have been shown to improve upon mechanical properties compared to their singlecomponent counterparts. Poly (ethylene glycol) dimethacrylate (PEGDMA) and alginate are polymers that have been used to form hydrogels for biological applications. Singlecomponent and composite PEGDMA and alginate systems were fabricated with a range of total polymer concentrations. Bulk gels were mechanically characterized using spherical indentation testing and a viscoelastic analysis framework. An increase in shear modulus with increasing polymer concentration was demonstrated for all systems. Alginate hydrogels were shown to have a smaller viscoelastic ratio than the PEGDMA gels, indicating more extensive relaxation over time. Composite alginate and PEGDMA hydrogels exhibited a combination of the mechanical properties of the constituents, as well as a qualitative increase in toughness. Additionally, multiple hydrogel systems were produced that had similar shear moduli, but different viscoelastic behaviors. Accurate measurement of the mechanical properties of hydrogels is necessary in order to determine what parameters are key in modeling the cellular microenvironment. © 2014 The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A circular system is employed in this paper to investigate the swelling behaviors of polyampholyte hydrogels; this circular system can effectively eliminate the disturbance of various factors and keep the surrounding environment constant. It is found that there exists a spontaneous volume transition to the collapsed state of polyampholyte hydrogels, which is attributed to the overshooting effect, and the transition can occur repeatedly under certain conditions. C-13 NMR is employed to investigate the swelling behavior of polyampholyte hydrogels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Stimuli-sensitive or intelligent hydrogels have been investigated for many biomedical and pharmaceutical applications. Those hydrogels with dual sensitivity will have more extensive potential applications. The aim of the work presented was to prepare a series of thermo- and pH-sensitive hydrogels based on poly(vinylmethyl ether) (PVME) and carboxymethylchitosan (CMCS). The hydrogels were crosslinked using electron beam irradiation (EB) or using glutaraldehyde (GA) as a crosslinker at room temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Methacrylic acid based inverse opal hydrogels (MIOHs) have been prepared by controlling the synthesis conditions, including cross-linker content, solvent content, and water content in solvent mixtures to explore the effect of the synthesis conditions (especially solvent content and mixture) on the response performance. Various response events (pH, solvent, ionic strength, 1,4-phenylenediamine dihydrochloride (PDA) response) have been investigated. For pH, solvent response, the same response behaviors have been observed: both the increased solvent (only ethanol) content and the enhanced water content in solvent will lead to the reduced response level of MIOHs compared to that of the increased cross-linker content. However, two different kinds of response behaviors for ionic strength response have been found by adjusting the synthesis conditions. The kinetics of pH response shows characteristics of a diffusion-limited process, and the equilibrium response time is about 20 min, which cannot be reduced by changing the synthesis conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Novel intelligent hydrogels composed of biodegradable and pH-sensitive poly(L-glutamic acid) (PGA) and temperature sensitive poly(N-isopropylacrylamide-co-2-hydroxyethyl methacrylate) (PNH) were synthesized and characterized for controlled release of hydrophilic drug. The influence of pH on the equilibrium swelling ratios of the hydrogels was investigated. A higher PNH content resulted in lower equilibrium swelling ratios. Although temperature had little influence on the swelling behaviors of the hydrogels, the changes of optical transmittance of hydrogels as a function of temperature were marked, which showed that the PNH part of hydrogel exhibited hydrophobic property at temperature above the lower critical solution temperature (LCST). The biodegradation rate of the stimuli-sensitive hydrogels in the presence of enzyme was directly proportional to the PGA content. Lysozyme was chosen as a model drug and loaded into the hydrogels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two series of the nanocomposite hydrogels were synthesized by in-situ solution polymerization. One pre-gel solution was obtained by directly dispersing the montmorillonite (MMT) powder into aqueous monomer solution and the other pre-gel solution was obtained by mixing monomer aqueous solution and the dispersion of MMT. The structure and performance of two series of hydrogels in dry state were studied by XRD, Raman spectroscopy, TEM and Al-27 MAS NMR. Compressing test results showed that the gel strength of the hydrogels prepared by the latter method was much higher than that by the former method. When acryloyloxyethyl trimethyl ammonium chloride (DAC) was introduced into the system, hydrogels with excellent nanostructure could be synthesized. The result of Al-27 MAS NMR suggested that the chemical environment of aluminum in MMT was changed by the introduction of DAC due to the interaction between the groups of DAC and MMT layers. Thus, the combination of copolymerizing with strong polar monomers and using the dispersion of MMT were the effective ways to obtain tranocomposite hydrogel of MMT and ionic monomers. The nanostructure of the hydrogel improved the gel strength, while the swelling ratio of the hydrogel depended on synergic effects of multifunctional groups.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The poly(vinyl alcohol)/ poly(N-vinyl pyrrolidone) (PVA-PVP) hydrogels containing silver nanoparticles were prepared by repeated freezing-thawing treatment. The silver content in the solid composition was in the range of 0.1-1.0 wt %, the silver particle size was from 20 to 100 nm, and the weight ratio of PVA to PVP was 70 : 30. The influence of silver nanoparticles on the properties of PVA-PVP matrix was investigated by differential scanning calorimeter, infrared spectroscopy and UV-vis spectroscopy, using PVA-PVP films containing silver particles as a model. The morphology of freeze-dried PVA-PVP hydrogel matrix and dispersion of the silver nanoparticles in the matrix was examined by scanning electron microscopy. It was found that a three-dimensional structure was formed during the process of freezing-thawing treatment and no serious aggregation of the silver nanoparticles occurred. Water absorption properties, release of silver ions from the hydrogels and the antibacterial effects of the hydrogels against Escherichia coli and Staphylococcus aureus were examined too. It was proved that the nanosilver-containing hydrogels had an excellent antibacterial ability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Novel biodegradable hydrogels by photo-cross-linking macromers based on polyphosphoesters and poly(ethylene glycol) (PEG) are reported. Photo-cross-linkable macromers were synthesized by ring-opening polymerization of the cyclic phosphoester monomer 2-(2-oxo-1,3,2-dioxaphospholoyloxy) ethyl methacrylate (OPEMA) using PEG as the initiator and stannous octoate as the catalyst. The macrorners were characterized by H-1 NMR, Fourier transform infrared spectroscopy, and gel permeation chromatography measurements. The content of polyphosphoester in the macromer was controlled by varying the feed ratio of OPEMA to PEG. Hydrogels were fabricated by exposing aqueous solutions of macromers with 0.05% (w/w) photoinitiator to UV light irradiation, and their swelling kinetics as well as degradation behaviors were evaluated. The results demonstrated that cross-linking density and pH values strongly affected the degradation rates. The macromers was compatible to osteoblast cells, not exhibiting significant cytotoxicity up to 0.5 mg/mL. "Live/dead" cell staining assay also demonstrated that a large majority of the osteoblast cells remained viable after encapsulation into the hydrogel constructs, showing their potential as tissue engineering scaffolds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Poly(vinyl alcohol) /poly(N-vinyl pyrrolidone) (PVP)/chitosan hydrogels were prepared by a low-temperature treatment and subsequent Co-60 -gamma-ray irradiation and then were medicated with ciprofloxacin lactate (an antibiotic) and chitosan oligomer (molecular weight = 3000 g/mol). The gel content, swelling ratio, tensile strength, and crystallinity of the hydrogels were determined. The effects of the chitosan molecular weight, the low-temperature treatment procedure, and the radiation dosage on the hydrogel properties were examined. The molecular weight of chitosan was lowered by the irradiation, but its basic polysaccharide structure was not destroyed. Repeating the low-temperature treatment and gamma-ray irradiation caused effective physical crosslinking and chemical crosslinking, respectively, and contributed to the mechanical strength of the final hydrogels. The incorporation of PVP and chitosan resulted in a significant improvement in the equilibrium swelling ratio. and elongation ratio of the prepared hydrogels. The ciprofloxacin lactate and chitosan oligomer were soaked into the hydrogels. Their in vitro release behaviors were examined, and they were found to follow diffusion-controlled kinetics.