423 resultados para Myocardium


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The efficacy of antioxidant supplementation in the prevention of cardiovascular disease appears equivocal, however the use of more potent antioxidant combinations than those traditionally used may exert a more positive effect. We have shown previously that supplementation of vitamin E and α-lipoic acid increases cardiac performance during post-ischemia reperfusion in older rats and increases Bcl-2 levels in endothelial cells. The purpose of this study was to examine the effects of vitamin E and α-lipoic acid supplementation on myocardial gene expression with a view to determine their mechanism of action. Young male rats received either a control (n=7) or vitamin E and α-lipoic acid supplemented diet (n=8) for 14 weeks. RNA from myocardial tissue was then amplified and samples were pooled within groups and competitively hybridized to 5K oligonucleotide rat microarrays. The relative expression of each gene was then compared to the control sample. Animals that received the antioxidant-supplemented diet exhibited upregulation (>1.5×) of 13 genes in the myocardium with 2 genes downregulated.� �Upregulated genes include those involved in cell growth and maintenance (LynB, Csf1r, Akt2, Tp53), cell signaling (LynB, Csf1r) and signal transduction (Pacsin2, Csf1r). Downregulated genes encode thyroid (Thrsp) and F-actin binding proteins (Nexilin).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neural crest cells originate from the dorsal most region of the embryonic neural tube. These cells migrate into several embryonic locations and differentiate into a variety of cell types. Cardiac neural crest (CNC) cells are a set of neural crest progenitors that aid in the proper formation of the cardiac septum, which separates the pulmonary from the systemic circulation. We have used Splotch mice to investigate whether the murine CNC cells play a role during the development oft he myocardium and the conduction system. Splotch mice carry a mutation in the P AX3 transcription factor, and display a problem in CNC cell migration. A scanning-electron-microscopy analysis of Splotch mutant-embryonic-hearts reveals abnormalities in the interventricular septum. In addition, the right and left ventricular cavities appear dilated relative to a wild type heart. Hoechst nuclei staining of Splotch heart cryosections demonstrates a decreased number of cardiomyocytes and a corresponding thinner ventricular wall. The absence of Connexin 40 in the ventricles of Splotch mutants, suggests conduction system defects. These results support the evidence that CNC cell signaling plays a role in modulating the growth and development of murine cardiomyocytes and their differentiation into conductile cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Non-compaction of the ventricular myocardium (NCM) is a genetic cardiomyopathy usually due to mutationof the G4.5 gene located in the Xq28 chromosomal region. This congenital disorder is characterized by pronounced trabeculations and intertrabecular recesses resulting from abnormal embryogenesis between the fifth and eighth fetal weeks. The reported prevalence in the general population is between 0.014% and 1.3%. The classic triad of complications includes heart failure, ventricular arrhythmias and systemic embolic events, although some patients have an asymptomatic form. NCM is commonly diagnosed by echocardiography, but contrast ventriculography, CT and MRI can also be used. Here we present a case of left ventricle NCM, manifested after respiratory infection, in a pregnant patient with congenital thrombophilia and a history of myocardial infarction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cardiomyopathies represent a group of diseases of the myocardium of the heart and include diseases both primarily of the cardiac muscle and systemic diseases leading to adverse effects on the heart muscle size, shape, and function. Traditionally cardiomyopathies were defined according to phenotypical appearance. Now, as our understanding of the pathophysiology of the different entities classified under each of the different phenotypes improves and our knowledge of the molecular and genetic basis for these entities progresses, the traditional classifications seem oversimplistic and do not reflect current understanding of this myriad of diseases and disease processes. Although our knowledge of the exact basis of many of the disease processes of cardiomyopathies is still in its infancy, it is important to have a classification system that has the ability to incorporate the coming tide of molecular and genetic information. This paper discusses how the traditional classification of cardiomyopathies based on morphology has evolved due to rapid advances in our understanding of the genetic and molecular basis for many of these clinical entities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background and purpose Phosphodiesterases PDE3 and/or PDE4 control ventricular effects of catecholamines in several species but their relative effects in failing human ventricle are unknown. We investigated whether the PDE3-selective inhibitor cilostamide (0.3-1μM) or PDE4 inhibitor rolipram (1-10μM) modified the positive inotropic and lusitropic effects of catecholamines in human failing myocardium. Experimental approach Right and left ventricular trabeculae from freshly explanted hearts of 5 non-β-blocker-treated and 15 metoprolol-treated patients with terminal heart failure were paced to contract at 1Hz. The effects of (-)-noradrenaline, mediated through β1-adrenoceptors (β2-adrenoceptors blocked with ICI118551), and (-)-adrenaline, mediated through β2-adrenoceptors (β1-adrenoceptors blocked with CGP20712A), were assessed in the absence and presence of PDE inhibitors. Catecholamine potencies were estimated from –logEC50s. Key results Cilostamide did not significantly potentiate the inotropic effects of the catecholamines in non-β-blocker-treated patients. Cilostamide caused greater potentiation (P=0.037) of the positive inotropic effects of (-)-adrenaline (0.78±0.12 log units) than (-)-noradrenaline (0.47±0.12 log units) in metoprolol-treated patients. Lusitropic effects of the catecholamines were also potentiated by cilostamide. Rolipram did not affect the inotropic and lusitropic potencies of (-)-noradrenaline or (-)-adrenaline on right and left ventricular trabeculae from metoprolol-treated patients. Conclusions and implications Metoprolol induces a control by PDE3 of ventricular effects mediated through both β1- and β2-adrenoceptors, thereby further reducing sympathetic cardiostimulation in patients with terminal heart failure. Concurrent therapy with a PDE3 blocker and metoprolol could conceivably facilitate cardiostimulation evoked by adrenaline through β2-adrenoceptors. PDE4 does not appear to reduce inotropic and lusitropic effects of catecholamines in failing human ventricle.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Toll-like receptors (TLR) are key regulators of innate immune and inflammatory responses and their activation is linked to impaired glucose metabolism during metabolic disease. Determination of whether TLR4 signaling can be activated in the heart by insulin may shed light on the pathogenesis of diabetic cardiomyopathy, a process that is often complicated by obesity and insulin resistance. The aim of the current study was to determine if supraphysiological insulin concentrations alter the expression of TLR4, markers of TLR4 signaling and glucose transporters (GLUTs) in the heart. Firstly, the effect of insulin on TLR4 protein expression was investigated in vitro in isolated rat cardiac myocytes. Secondly, protein expression of TLR4, the pro-inflammatory cytokines interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) suppressor of cytokine signaling 3 (SOCS3) and GLUTs (1, 4, 8, 12) were examined in the equine ventricular myocardium following a prolonged, euglycemic, hyperinsulinemic clamp. Down-regulation of TLR4 protein content in rat cardiac myocytes was observed after incubation with a supraphysiologic concentration of insulin as well as in the equine myocardium after prolonged insulin infusion. Further, cardiac TLR4 expression was negatively correlated with serum insulin concentration. Markers of cardiac TLR4 signaling and GLUT expression were not affected by hyperinsulinemia and concomitant TLR4 down-regulation. Since TLRs are major determinants of the inflammatory response, our findings suggest that insulin infusion exerts an anti-inflammatory effect in the hearts of non-obese individuals. Understanding the regulation of cardiac TLR4 signaling during metabolic dysfunction will facilitate improved management of cardiac sequela to metabolic syndrome and diabetes.