964 resultados para MCF-7 Cells


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have previously reported that human breast carcinoma (HBC) cell lines expressing the mesenchymal intermediate filament protein vimentin (VIM+) are highly invasive in vitro, and highly metastatic in nude mice when compared to their VIM- counterparts. Since only VIM+ cell lines can be induced to activate matrix metalloproteinase-2 (MMP-2) upon stimulation with Concanavalin A (Con A), we have examined here membrane type 1 MMP (MT1-MMP), a cell surface activator of MMP-2. Northern analysis reveals baseline expression of MT1-MMP in five of the six VIM+ cell lines studied (MDA-MB-231, MDA-MB-435, BT-549, Hs578T, MCF-7(ADR)), each of which showed variable activation of exogenous MMP-2 after treatment with Con A. In contrast, the four VIM-, poorly invasive HBC cell lines studied (MCF-7, T47D, MDA-MB 468, ZR-75-1) lacked baseline MT1-MMP mRNA expression, and showed no induction of either MT1-MMP expression or MMP-2-activation with Con A. Such differential MT1-MMP expression was confirmed in vivo using in situ hybridization analysis of nude mouse tumor xenografts of representative cell lines. Western analysis of the MDA-MB-231 cells revealed baseline membrane expression of a 60 kDa species, which was strongly induced by Con A treatment along with a weaker band co-migrating with that from MT1-MMP-transfected COS-1 cells (63 kDa), presumably representing latent MT1-MMP. MT1-MMP immunofluorescence strongly decorated Con A-stimulated MDA-MB-231 cells in a manner consistent with membranous staining, but did not decorate the unstimulated MDA-MB-231 cells or MCF-7 cells under either condition. Collectively, the results suggest the constitutive production of active MT1-MMP which is unavailable for either MMP-2 activation or immuno-decoration until Con A treatment. Since VIM expression arises by virtue of the so-called epithelial to mesenchymal transition (EMT) in invasive embryonic epithelia, we propose that this represents a major metastasis mechanism in breast carcinomas. MT1-MMP on the surface of such 'fibroblastoid' carcinoma cells may mediate a paracrine loop for the utilization of stromally produced MMP-2, and contribute to the poorer survival associated with VIM+ breast carcinomas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of αVβ3 integrin on MT1-MMP functionality was studied in human breast cancer cells of differing β3 integrin status. Overexpression of β3 integrin caused increased cell surface expression of αV integrin and increased cellular adhesion to extracellular matrix (ECM) substrates in BT-549, MDA-MB-231 and MCF-7 cells. β3 integrin expression also enhanced the migration of breast cancer cells on ECM substrates and enhanced collagen gel contraction. In vivo, αVβ3 cooperated with MT1-MMP to increase the growth of MCF-7 cells after orthotopic inoculation in immunocompromised mice, but had no influence on in vitro proliferation. Despite these stimulatory effects, overexpression of β3 integrin suppressed the type I collagen (Col I) induced MMP-2 activation in all breast cancer cell lines analyzed. This was also evident in extracts from the MCF-7 tumors in vivo, where MMP-2 activation was stimulated by MT1-MMP transfection, but attenuated with β3 integrin expression. Although our studies confirm important biological effects of αVβ3 integrin on enhancing cell adhesion and migration, ECM remodeling and tumor growth, β3 integrin caused reduced MMP-2 activation in response to Col I in vitro, which appears to be physiologically relevant, as it was also seen in tumor xenografts in vivo. The reduction of MMP-2 activation (and thus MT1-MMP activity) by αVβ3 in response to Col I may be important in scenarios where cells which are activated for matrix degradation need to preserve some pericellular collagen, perhaps as a substrate for cell adhesion and migration, thus maintaining a balanced level of proteolysis required for efficient tumor growth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using cell based screening assay, we identified a novel anti-tubulin agent (Z)-5-((5-(4-bromo-3-chlorophenyl)furan-2-yl)methylene)-2-thioxothiazoli din-4-one (BCFMT) that inhibited proliferation of human cervical carcinoma (HeLa) (IC50, 7.2 +/- 1.8 mu M), human breast adenocarcinoma (MCF-7) (IC50, 10.0 +/- 0.5 mu M), highly metastatic breast adenocarcinoma (MDA-MB-231) (IC50, 6.0 +/- 1 mu M), cisplatin-resistant human ovarian carcinoma (A2780-cis) (IC50, 5.8 +/- 0.3 mu M) and multi-drug resistant mouse mammary tumor (EMT6/AR1) (IC50, 6.5 +/- 1 mu M) cells. Using several complimentary strategies, BCFMT was found to inhibit cancer cell proliferation at G2/M phase of the cell cycle apparently by targeting microtubules. In addition, BCFMT strongly suppressed the dynamics of individual microtubules in live MCF-7 cells. At its half maximal proliferation inhibitory concentration (10 mu M), BCFMT reduced the rates of growing and shortening phases of microtubules in MCF-7 cells by 37 and 40%, respectively. Further, it increased the time microtubules spent in the pause (neither growing nor shortening detectably) state by 135% and reduced the dynamicity (dimer exchange per unit time) of microtubules by 70%. In vitro, BCFMT bound to tubulin with a dissociation constant of 8.3 +/- 1.8 mu M, inhibited tubulin assembly and suppressed GTPase activity of microtubules. BCFMT competitively inhibited the binding of BODIPY FL-vinblastine to tubulin with an inhibitory concentration (K-i) of 5.2 +/- 1.5 mu M suggesting that it binds to tubulin at the vinblastine site. In cultured cells, BCFMT-treatment depolymerized interphase microtubules, perturbed the spindle organization and accumulated checkpoint proteins (BubR1 and Mad2) at the kinetochores. BCFMT-treated MCF-7 cells showed enhanced nuclear accumulation of p53 and its downstream p21, which consequently activated apoptosis in these cells. The results suggested that BCFMT inhibits proliferation of several types of cancer cells including drug resistance cells by suppressing microtubule dynamics and indicated that the compound may have chemotherapeutic potential.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Photoactive metal complexes have emerged as potential candidates in the photodynamic therapy (PDT) of cancer. We present here the synthesis, characterization and visible light-triggered anticancer activity of two novel mixed-ligand oxo-bridged iron(III) complexes, viz., {Fe(L)(acac)}(2)(mu-O)](ClO4)(2) (1) and {Fe (L)(cur)}(2)(mu-O)](ClO4)(2) (2) where L is bis-(2-pyridylmethyl)-benzylamine, acac is acetylacetonate and cur is the monoanion of curcumin (bis(4-hydroxy-3-methoxyphenyl)-1,6-diene-3,5-dione). The crystal structure of complex 1 (as PF6 salt, 1a) shows distorted octahedral geometry of each iron(III) centre formed by the FeN3O3 core. The 1: 2 electrolytic complexes are stable in solution and retain their oxo-bridged identity in aqueous medium. Complex 2 has a strong absorption band in the visible region and shows promising photocytotoxicity in HeLa and MCF-7 cancer cells in visible light giving respective IC50 values of 3.1 +/- 0.4 lM and 4.9 +/- 0.5 lM while remains non-toxic in the dark (IC50 > 50 lM). The control complex 1 is inactive both in the light and dark. Complex 2 accumulates in cytoplasm of HeLa and MCF-7 cells as evidenced from fluorescence microscopy and triggers apoptotic cell death via light-assisted generation of reactive oxygen species (ROS). Taken together, complex 2 with its promising photocytotoxicity but negligible dark toxicity in cancer cells has significant photochemotherapeutic potential for applications in PDT. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

<正>MCF-7细胞是被广泛用以研究乳腺癌的一株模式细胞,该细胞拥有野生型p53基因,但其辐射敏感性与p53基因表达状态无关,这提示可能存在其他基因参与调节其辐

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Macromolecular therapeutics and nano-sized drug delivery systems often require localisation to specific intracellular compartments. In particular, efficient endosomal escape, retrograde trafficking, or late endocytic/lysosomal activation are often prerequisites for pharmacological activity. The aim of this study was to define a fluorescence microscopy technique able to confirm the localisation of water-soluble polymeric carriers to late endocytic intracellular compartments. Three polymeric carriers of different molecular weight and character were studied: dextrin (Mw~50,000 g/mol), a N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer (Mw approximately 35,000 g/mol) and polyethylene glycol (PEG) (Mw 5000 g/mol). They were labelled with Oregon Green (OG) (0.3-3 wt.%; <3% free OG in respect of total). A panel of relevant target cells were used: THP-1, ARPE-19, and MCF-7 cells, and primary bovine chondrocytes (currently being used to evaluate novel polymer therapeutics) as well as NRK and Vero cells as reference controls. Specific intracellular compartments were marked using either endocytosed physiological standards, Marine Blue (MB) or Texas-red (TxR)-Wheat germ agglutinin (WGA), TxR-Bovine Serum Albumin (BSA), TxR-dextran, ricin holotoxin, C6-7-nitro-2,1,3-benzoxadiazol-4-yl (NBD)-labelled ceramide and TxR-shiga toxin B chain, or post-fixation immuno-staining for early endosomal antigen 1 (EEA1), lysosomal-associated membrane proteins (LAMP-1, Lgp-120 or CD63) or the Golgi marker GM130. Co-localisation with polymer-OG conjugates confirmed transfer to discreet, late endocytic (including lysosomal) compartments in all cells types. The technique described here is a particularly powerful tool as it circumvents fixation artefacts ensuring the retention of water-soluble polymers within the vesicles they occupy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Endoplasmic reticulum protein 29 (ERp29) is a novel endoplasmic reticulum ( ER) secretion factor that facilitates the transport of secretory proteins in the early secretory pathway. Recently, it was found to be overexpressed in several cancers; however, little is known regarding its function in breast cancer progression. In this study, we show that the expression of ERp29 was reduced with tumor progression in clinical specimens of breast cancer, and that overexpression of ERp29 resulted in G(0)/G(1) arrest and inhibited cell proliferation in MDA-MB-231 cells. Importantly, overexpression of ERp29 in MDA-MB-231 cells led to a phenotypic change and mesenchymal-epithelial transition (MET) characterized by cytoskeletal reorganization with loss of stress fibers, reduction of fibronectin (FN), reactivation of epithelial cell marker E-cadherin and loss of mesenchymal cell marker vimentin. Knockdown of ERp29 by shRNA in MCF-7 cells reduced E-cadherin, but increased vimentin expression. Furthermore, ERp29 overexpression in MDA-MB-231 and SKBr3 cells decreased cell migration/invasion and reduced cell transformation, whereas silencing of ERp29 in MCF-7 cells enhanced cell aggressive behavior. Significantly, expression of ERp29 in MDA-MB-231 cells suppressed tumor formation in nude mice by repressing the cell proliferative index (Ki-67 positivity). Transcriptional profiling analysis showed that ERp29 acts as a central regulator by upregulating a group of genes with tumor suppressive function, for example, E-cadherin (CDH1), cyclin-dependent kinase inhibitor (CDKN2B) and spleen tyrosine kinase (SYK), and by downregulating a group of genes that regulate cell proliferation (eg, FN, epidermal growth factor receptor ( EGFR) and plasminogen activator receptor ( uPAR)). It is noteworthy that ERp29 significantly attenuated the overall ERK cascade, whereas the ratio of p-ERK1 to p-ERK2 was highly increased. Taken together, our results showed that ERp29 is a novel regulator leading to cell growth arrest and cell transition from a proliferative to a quiescent state, and reprogramming molecular portraits to suppress the tumor growth of MDA-MB-231 breast cancer cells. Laboratory Investigation (2009) 89, 1229-1242; doi: 10.1038/labinvest.2009.87; published online 21 September 2009

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tesis (Maestría en Ciencias con Acentuación en Inmunolobiología) UANL, 2012.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Doxorubicin is effective against breast cancer, but its major side effect is cardiotoxicity. The aim of this study was to determine whether the efficacy of doxorubicin on cancer cells could be increased in combination with PPARγ agonists or chrono-optimization by exploiting the diurnal cycle. We determined cell toxicity using MCF-7 cancer cells, neonatal rat cardiac myocytes and fibroblasts in this study. Doxorubicin damages the contractile filaments of cardiac myocytes and affects cardiac fibroblasts by significantly inhibiting collagen production and proliferation at the level of the cell cycle. Cyclin D1 protein levels decreased significantly following doxorubicin treatment indicative of a G1 /S arrest. PPARγ agonists with doxorubicin increased the toxicity to MCF-7 cancer cells without affecting cardiac cells. Rosiglitazone and ciglitazone both enhanced anti-cancer activity when combined with doxorubicin (e.g. 50% cell death for doxorubicin at 0.1 μM compared to 80% cell death when combined with rosiglitazone). Thus, the therapeutic dose of doxorubicin could be reduced by 20-fold through combination with the PPARγ agonists, thereby reducing adverse effects on the heart. The presence of melatonin also significantly increased doxorubicin toxicity, in cardiac fibroblasts (1 μM melatonin) but not in MCF-7 cells. Our data show, for the first time, that circadian rhythms play an important role in doxorubicin toxicity in the myocardium; doxorubicin should be administered mid-morning, when circulating levels of melatonin are low, and in combination with rosiglitazone to increase therapeutic efficacy in cancer cells while reducing the toxic effects on the heart.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Alkyl esters of p–hydroxybenzoic acid (parabens) are widely used as preservatives in personal care products, foods and pharmaceuticals. Their oestrogenic activity, their measurement in human breast tissue and their ability to drive proliferation of oestrogen-responsive human breast cancer cells has opened a debate on their potential to influence breast cancer development. Since proliferation is not the only hallmark of cancer cells, we have investigated the effects of exposure to parabens at concentrations of maximal proliferative response on migratory and invasive properties using three oestrogen-responsive human breast cancer cell lines (MCF-7, T-47-D, ZR-75-1). Cells were maintained short-term (1 week) or long-term (20±2 weeks) in phenol-red-free medium containing 5% charcoal-stripped serum with no addition, 10-8M 17-oestradiol, 1-5x10-4M methylparaben, 10-5M n-propylparaben or 10-5M n-butylparaben. Long-term exposure (20±2 weeks) of MCF-7 cells to methylparaben, n-propylparaben or n-butylparaben increased migration as measured using a scratch assay, time-lapse microscopy and xCELLigence technology: invasive properties were found to increase in matrix degradation assays and migration through matrigel on xCELLigence. Western immunoblotting showed an associated downregulation of E-cadherin and -catenin in the long-term paraben-exposed cells which could be consistent with a mechanism involving epithelial to mesenchymal transition. Increased migratory activity was demonstrated also in long-term paraben-exposed T-47-D and ZR-75-1 cells using a scratch assay and time-lapse microscopy. This is the first report that in vitro, parabens can influence not only proliferation but also migratory and invasive properties of human breast cancer cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Selenoprotein S (SEPS1) is a novel endoplasmic reticulum (ER) resident protein and it is known to play an important role in production of inflammatory cytokines. Here, we show evidence that SEPS1 is stimulated by pharmacological ER stress agents in RAW264.7 macrophages as well as other cell types. Overexpression studies reveal a protective action of SEPS1 in macrophages against ER stress-induced cytotoxicity and apoptosis, resulting in promoting cell survival during ER stress. The protective action of SEPS1 is largely dependent on ER stress-mediated cell death signal with less effect on non-ER stress component cell death signals. Conversely, suppression of SEPS1 in macrophages results in sensitization of cells to ER stress-induced cell death. These findings suggest that SEPS1 could be a new ER stress-dependent survival factor that protects macrophage against ER stress-induced cellular dysfunction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High serum levels of Interleukin-6 (IL-6) correlate with poor outcome in breast cancer patients. However no data are available on the relationship between IL-6 and stem/progenitor cells which may fuel the genesis of breast cancer in vivo. Herein, we address this issue in mammospheres (MS), multi-cellular structures enriched in stem/progenitor cells of the mammary gland, and also in MCF-7 breast cancer cells. We show that MS from node invasive breast carcinoma tissues express IL-6 mRNA at higher levels than MS from matched non-neoplastic mammary glands. We find that IL-6 mRNA is detectable only in basal-like breast carcinoma tissues, an aggressive variant showing stem cell features. Our results reveal that IL-6 triggers a Notch-3-dependent up-regulation of the Notch ligand Jagged-1, whose interaction with Notch-3 promotes the growth of MS and MCF-7 derived spheroids. Moreover, IL-6 induces a Notch-3-dependent up-regulation of the carbonic anhydrase IX gene, which promotes a hypoxia-resistant/invasive phenotype in MCF-7 cells and MS. Finally, an autocrine IL-6 loop relies upon Notch-3 activity to sustain the aggressive features of MCF-7-derived hypoxia-selected cells. In conclusion, our data support the hypothesis that IL-6 induces malignant features in Notch-3 expressing, stem/progenitor cells from human ductal breast carcinoma and normal mammary gland.