975 resultados para Load Flow


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Eventually, violations of voltage limits at buses or admissible loadings of transmission lines and/or power transformers may occur by the power system operation. If violations are detected in the supervision process, corrective measures may be carried out in order to eliminate them or to reduce their intensity. Loading restriction is an extreme solution and should only be adopted as the last control action. Previous researches have shown that it is possible to control constraints in electrical systems by changing the network topology, using the technique named Corrective Switching, which requires no additional costs. In previous works, the proposed calculations for verifying the ability of a switching variant in eliminating an overload in a specific branch were based on network reduction or heuristic analysis. The purpose of this work is to develop analytical derivation of linear equations to estimate current changes in a specific branch (due to switching measures) by means of few calculations. For bus-bar coupling, derivations will be based on short-circuit theory and Relief Function methodology. For bus-bar splitting, a Relief Function will be derived based on a technique of equivalent circuit. Although systems of linear equations are used to substantiate deductions, its formal solution for each variant, in real time does not become necessary. A priority list of promising variants is then assigned for final check by an exact load flow calculation and a transient analysis using ATP Alternative Transient Program. At last, results obtained by simulation in networks with different features will be presented

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Most algorithms for state estimation based on the classical model are just adequate for use in transmission networks. Few algorithms were developed specifically for distribution systems, probably because of the little amount of data available in real time. Most overhead feeders possess just current and voltage measurements at the middle voltage bus-bar at the substation. In this way, classical algorithms are of difficult implementation, even considering off-line acquired data as pseudo-measurements. However, the necessity of automating the operation of distribution networks, mainly in regard to the selectivity of protection systems, as well to implement possibilities of load transfer maneuvers, is changing the network planning policy. In this way, some equipments incorporating telemetry and command modules have been installed in order to improve operational features, and so increasing the amount of measurement data available in real-time in the System Operation Center (SOC). This encourages the development of a state estimator model, involving real-time information and pseudo-measurements of loads, that are built from typical power factors and utilization factors (demand factors) of distribution transformers. This work reports about the development of a new state estimation method, specific for radial distribution systems. The main algorithm of the method is based on the power summation load flow. The estimation is carried out piecewise, section by section of the feeder, going from the substation to the terminal nodes. For each section, a measurement model is built, resulting in a nonlinear overdetermined equations set, whose solution is achieved by the Gaussian normal equation. The estimated variables of a section are used as pseudo-measurements for the next section. In general, a measurement set for a generic section consists of pseudo-measurements of power flows and nodal voltages obtained from the previous section or measurements in real-time, if they exist -, besides pseudomeasurements of injected powers for the power summations, whose functions are the load flow equations, assuming that the network can be represented by its single-phase equivalent. The great advantage of the algorithm is its simplicity and low computational effort. Moreover, the algorithm is very efficient, in regard to the accuracy of the estimated values. Besides the power summation state estimator, this work shows how other algorithms could be adapted to provide state estimation of middle voltage substations and networks, namely Schweppes method and an algorithm based on current proportionality, that is usually adopted for network planning tasks. Both estimators were implemented not only as alternatives for the proposed method, but also looking for getting results that give support for its validation. Once in most cases no power measurement is performed at beginning of the feeder and this is required for implementing the power summation estimations method, a new algorithm for estimating the network variables at the middle voltage bus-bar was also developed

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The usual programs for load flow calculation were in general developped aiming the simulation of electric energy transmission, subtransmission and distribution systems. However, the mathematical methods and algorithms used by the formulations were based, in majority, just on the characteristics of the transmittion systems, which were the main concern focus of engineers and researchers. Though, the physical characteristics of these systems are quite different from the distribution ones. In the transmission systems, the voltage levels are high and the lines are generally very long. These aspects contribute the capacitive and inductive effects that appear in the system to have a considerable influence in the values of the interest quantities, reason why they should be taken into consideration. Still in the transmission systems, the loads have a macro nature, as for example, cities, neiborhoods, or big industries. These loads are, generally, practically balanced, what reduces the necessity of utilization of three-phase methodology for the load flow calculation. Distribution systems, on the other hand, present different characteristics: the voltage levels are small in comparison to the transmission ones. This almost annul the capacitive effects of the lines. The loads are, in this case, transformers, in whose secondaries are connected small consumers, in a sort of times, mono-phase ones, so that the probability of finding an unbalanced circuit is high. This way, the utilization of three-phase methodologies assumes an important dimension. Besides, equipments like voltage regulators, that use simultaneously the concepts of phase and line voltage in their functioning, need a three-phase methodology, in order to allow the simulation of their real behavior. For the exposed reasons, initially was developped, in the scope of this work, a method for three-phase load flow calculation in order to simulate the steady-state behaviour of distribution systems. Aiming to achieve this goal, the Power Summation Algorithm was used, as a base for developping the three phase method. This algorithm was already widely tested and approved by researchers and engineers in the simulation of radial electric energy distribution systems, mainly for single-phase representation. By our formulation, lines are modeled in three-phase circuits, considering the magnetic coupling between the phases; but the earth effect is considered through the Carson reduction. Its important to point out that, in spite of the loads being normally connected to the transformers secondaries, was considered the hypothesis of existence of star or delta loads connected to the primary circuit. To perform the simulation of voltage regulators, a new model was utilized, allowing the simulation of various types of configurations, according to their real functioning. Finally, was considered the possibility of representation of switches with current measuring in various points of the feeder. The loads are adjusted during the iteractive process, in order to match the current in each switch, converging to the measured value specified by the input data. In a second stage of the work, sensibility parameters were derived taking as base the described load flow, with the objective of suporting further optimization processes. This parameters are found by calculating of the partial derivatives of a variable in respect to another, in general, voltages, losses and reactive powers. After describing the calculation of the sensibility parameters, the Gradient Method was presented, using these parameters to optimize an objective function, that will be defined for each type of study. The first one refers to the reduction of technical losses in a medium voltage feeder, through the installation of capacitor banks; the second one refers to the problem of correction of voltage profile, through the instalation of capacitor banks or voltage regulators. In case of the losses reduction will be considered, as objective function, the sum of the losses in all the parts of the system. To the correction of the voltage profile, the objective function will be the sum of the square voltage deviations in each node, in respect to the rated voltage. In the end of the work, results of application of the described methods in some feeders are presented, aiming to give insight about their performance and acuity

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The objective of the present work is develop a model to simulate electrical energy networks in transient and stead states, using the software ATP (Alternative Transient Program), able to be a way to join two distinct themes, present in classical methodology planning networks: short circuit analysis and load flow theory. Beyond that, using a tool for relay simulation, this paper intend to use the new developed model to investigate the influence of transient phenomenon in operation of protection relays, and calibrate the enterprise's protections relays. For testing the model, some relays, actually, installed at COSERN were used

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work has as main objective to show all the particularities regarding the Three-phase Power Summation Method, used for load flow calculation, in what it says respect to the influence of the magnetic coupling among the phases, as well as to the losses presented in all the existent transformers in the feeder to be analyzed. Besides, its application is detailed in the study of the short-circuits, that happen in the presence of high impedance values, which possess a problem, that is its difficult detection and consequent elimination on the part of common devices of protection. That happens due to the characteristic presented by the current of short¬ circuit, in being generally of the same order of greatness that the load currents. Results of simulations accomplished in several situations will be shown, objectifying a complete analysis of the behavior of the proposed method in several types of short-circuits. Confront of the results obtained by the method with results of another works will be presented to verify its effectiveness

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work develops a methodology for defining the maximum active power being injected into predefined nodes in the studied distribution networks, considering the possibility of multiple accesses of generating units. The definition of these maximum values is obtained from an optimization study, in which further losses should not exceed those of the base case, i.e., without the presence of distributed generation. The restrictions on the loading of the branches and voltages of the system are respected. To face the problem it is proposed an algorithm, which is based on the numerical method called particle swarm optimization, applied to the study of AC conventional load flow and optimal load flow for maximizing the penetration of distributed generation. Alternatively, the Newton-Raphson method was incorporated to resolution of the load flow. The computer program is performed with the SCILAB software. The proposed algorithm is tested with the data from the IEEE network with 14 nodes and from another network, this one from the Rio Grande do Norte State, at a high voltage (69 kV), with 25 nodes. The algorithm defines allowed values of nominal active power of distributed generation, in percentage terms relative to the demand of the network, from reference values

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Economic dispatch (ED) problems have recently been solved by artificial neural network approaches. Systems based on artificial neural networks have high computational rates due to the use of a massive number of simple processing elements and the high degree of connectivity between these elements. The ability of neural networks to realize some complex non-linear function makes them attractive for system optimization. All ED models solved by neural approaches described in the literature fail to represent the transmission system. Therefore, such procedures may calculate dispatch policies, which do not take into account important active power constraints. Another drawback pointed out in the literature is that some of the neural approaches fail to converge efficiently toward feasible equilibrium points. A modified Hopfield approach designed to solve ED problems with transmission system representation is presented in this paper. The transmission system is represented through linear load flow equations and constraints on active power flows. The internal parameters of such modified Hopfield networks are computed using the valid-subspace technique. These parameters guarantee the network convergence to feasible equilibrium points, which represent the solution for the ED problem. Simulation results and a sensitivity analysis involving IEEE 14-bus test system are presented to illustrate efficiency of the proposed approach. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O método de fluxo de carga convencional é considerado inadequado para se obter o ponto de máximo carregamento (PMC) de sistemas de potência, devido à singularidade da matriz Jacobiana neste ponto. Os métodos da continuação são ferramentas eficientes para a solução deste tipo de problema, visto que técnicas de parametrização podem ser utilizadas para evitar a singularidade da matriz Jacobiana. Neste trabalho, novas opções para a etapa de parametrização do método da continuação são apresentadas. Mostra-se que variáveis com claro significado físico podem ser utilizadas na etapa de parametrização. As seguintes variáveis foram testadas: perda total de potência ativa e reativa, potência ativa e reativa na barra de referência, potência reativa das barras de geração, e as perdas de potência ativa e reativa nas linhas de transmissão (LT). Além de facilitar a implementação computacional do método de continuação, as técnicas de parametrização apresentadas simplificam a definição matemática e o entendimento do método por parte de engenheiros de potência, visto que os métodos de continuação existentes na literatura sempre utilizam técnicas de parametrização complexas, e de interpretação puramente geométrica. Resultados obtidos com a nova metodologia para os sistemas testes do IEEE (14, 30, 57 e 118 barras) mostram que as características de convergência do método de fluxo de carga convencional são melhoradas na região do PMC. Além disso, durante o traçado das curvas PV, as diversas técnicas de parametrização podem ser comutadas entre si possibilitando o cálculo de todos os pontos da curva com um número reduzido de iterações. Diversos testes são realizados para proporcionar a comparação do desempenho dos esquemas de parametrização propostos.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Os métodos de fluxo de carga por Newton-Raphson e fluxo de carga desacoplado rápido convencionais são considerados inadequados para a obtenção do ponto de máximo carregamento de sistemas de potência, devido à problemas de mal-condicionamento neste ponto crítico e na sua vizinhança. Neste ponto a matriz Jacobiana do método de Newton-Raphson torna-se singular e considera-se que não são mais válidas as hipóteses de desacoplamento P-V e Q-teta utilizadas para a formulação do método fluxo de carga desacoplado rápido. No entanto, mostra-se neste trabalho, que com pequenas modificações, as versões XB e BX do fluxo de carga desacoplado rápido tornam-se adequadas para a obtenção do ponto de máximo carregamento. Estas novas versões modificadas são comparadas entre si com o intuito de explicitar suas características, assim como da influência da atuação dos limites de geração de potência reativa e de tap's de transformadores. Os resultados obtidos para os sistemas testes do IEEE (14, 30, 57 e 118 barras) mostram que as características de convergência das versões originais são preservadas. Além disso, durante o traçado das curvas PV, os diversos métodos podem ser comutados entre si possibilitando o cálculo de todos os pontos da curva com um número reduzido de iterações.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper an efficient algorithm for probabilistic analysis of unbalanced three-phase weakly-meshed distribution systems is presented. This algorithm uses the technique of Two-Point Estimate Method for calculating the probabilistic behavior of the system random variables. Additionally, the deterministic analysis of the state variables is performed by means of a Compensation-Based Radial Load Flow (CBRLF). Such load flow efficiently exploits the topological characteristics of the network. To deal with distributed generation, a strategy to incorporate a simplified model of a generator in the CBRLF is proposed. Thus, depending on the type of control and generator operation conditions, the node with distributed generation can be modeled either as a PV or PQ node. To validate the efficiency of the proposed algorithm, the IEEE 37 bus test system is used. The probabilistic results are compared with those obtained using the Monte Carlo method.