938 resultados para IONIZATION MASS-SPECTROMETRY


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A method with carbon nanotubes functioning both as the adsorbent of solid-phase extraction (SPE) and the matrix for matrix assisted laser desorption/ ionization mass spectrometry (MALDI-MS) to analyze small molecules in solution has been developed. In this method, 10 muL suspensions of carbon nanotubes in 50% (vol/vol) methanol were added to the sample solution to extract analytes onto surface of carbon nanotubes because of their dramatic hydrophobicity. Carbon nanotubes in solution are deposited onto the bottom of tube with centrifugation. After removing the supernatant fluid, carbon nanotubes are suspended again with dispersant and pipetted directly onto the sample target of the MALDI-MS to perform a mass spectrometric analysis. It was demonstrated by analysis of a variety of small molecules that the resolution of peaks and the efficiency of desorption/ ionization on the carbon nanotubes are better than those on the activated carbon. It is found that with the addition of glycerol and sucrose to the dispersant, the intensity, the ratio of signal to noise (S/N), and the resolution of peaks for analytes by mass spectrometry increased greatly. Compared with the previously reported method by depositing sample solution onto thin layer of carbon nanotubes, it is observed that the detection limit for analytes can be enhanced about 10 to 100 times due to solid-phase extraction of analytes in solution by carbon nanotubes. An acceptable result of simultaneously quantitative analysis of three analytes in solution has been achieved. The application in determining drugs spiked into urine has also been realized. (C) 2004 American Society for Mass Spectrometry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Jenkins, Tudor; Vaidyanathan, S.; Jones, D.G.; Ellis, J., (2007) 'Laser desorption/ionization mass spectrometry on porous silicon for metabolome analyses: influence of surface oxidation', Rapid Communications in Mass Spectrometry 21(13) pp.2157-2166 RAE2008

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A sampling and analytical system has been developed for shipboard measurements of high-resolution vertical profiles of the marine trace gas dimethylsulfide (DMS). The system consists of a tube attached to a CTD with a peristaltic pump on deck that delivers seawater to a membrane equilibrator and atmospheric pressure chemical ionization mass spectrometer (Eq-APCIMS). This allows profiling DMS concentrations to a depth of 50 m, with a depth resolution of 1.3-2 m and a detection limit of nearly 0.1 nmol L-1. The seawater is also plumbed to allow parallel operation of additional continuous instruments, and simultaneous collection of discrete samples for complementary analyses. A valve alternates delivery of seawater from the vertical profiler and the ship�s underway intake, thereby providing high-resolution measurements in both the vertical and horizontal dimensions. Tests conducted on various cruises in the Mediterranean Sea, Atlantic, Indian, and Pacific Oceans show good agreement between the Eq-APCIMS measurements and purge and trap gas chromatography with flame photometric detection (GC-FPD) and demonstrate that the delivery of seawater from the underway pump did not significantly affect endogenous DMS concentrations. Combination of the continuous flow DMS analysis with high-frequency hydrographic, optical, biological and meteorological measurements will greatly improve the spatial/temporal resolution of seagoing measurements and improve our understanding of DMS cycling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It has become evident that the mystery of life will not be deciphered just by decoding its blueprint, the genetic code. In the life and biomedical sciences, research efforts are now shifting from pure gene analysis to the analysis of all biomolecules involved in the machinery of life. One area of these postgenomic research fields is proteomics. Although proteomics, which basically encompasses the analysis of proteins, is not a new concept, it is far from being a research field that can rely on routine and large-scale analyses. At the time the term proteomics was coined, a gold-rush mentality was created, promising vast and quick riches (i.e., solutions to the immensely complex questions of life and disease). Predictably, the reality has been quite different. The complexity of proteomes and the wide variations in the abundances and chemical properties of their constituents has rendered the use of systematic analytical approaches only partially successful, and biologically meaningful results have been slow to arrive. However, to learn more about how cells and, hence, life works, it is essential to understand the proteins and their complex interactions in their native environment. This is why proteomics will be an important part of the biomedical sciences for the foreseeable future. Therefore, any advances in providing the tools that make protein analysis a more routine and large-scale business, ideally using automated and rapid analytical procedures, are highly sought after. This review will provide some basics, thoughts and ideas on the exploitation of matrix-assisted laser desorption/ ionization in biological mass spectrometry - one of the most commonly used analytical tools in proteomics - for high-throughput analyses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have combined several key sample preparation steps for the use of a liquid matrix system to provide high analytical sensitivity in automated ultraviolet -- matrix-assisted laser desorption/ionisation -- mass spectrometry (UV-MALDI-MS). This new sample preparation protocol employs a matrix-mixture which is based on the glycerol matrix-mixture described by Sze et al. The low-femtomole sensitivity that is achievable with this new preparation protocol enables proteomic analysis of protein digests comparable to solid-state matrix systems. For automated data acquisition and analysis, the MALDI performance of this liquid matrix surpasses the conventional solid-state MALDI matrices. Besides the inherent general advantages of liquid samples for automated sample preparation and data acquisition the use of the presented liquid matrix significantly reduces the extent of unspecific ion signals in peptide mass fingerprints compared to typically used solid matrices, such as 2,5-dihydroxybenzoic acid (DHB) or alpha-cyano-hydroxycinnamic acid (CHCA). In particular, matrix and low-mass ion signals and ion signals resulting from cation adduct formation are dramatically reduced. Consequently, the confidence level of protein identification by peptide mass mapping of in-solution and in-gel digests is generally higher.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have combined several key sample preparation steps for the use of a liquid matrix system to provide high analytical sensitivity in automated ultraviolet - matrix-assisted laser desorption/ ionisation - mass spectrometry (UV-MALDI-MS). This new sample preparation protocol employs a matrix-mixture which is based on the glycerol matrix-mixture described by Sze et al. U. Am. Soc. Mass Spectrom. 1998, 9, 166-174). The low-ferntomole sensitivity that is achievable with this new preparation protocol enables proteomic analysis of protein digests comparable to solid-state matrix systems. For automated data acquisition and analysis, the MALDI performance of this liquid matrix surpasses the conventional solid-state MALDI matrices. Besides the inherent general advantages of liquid samples for automated sample preparation and data acquisition the use of the presented liquid matrix significantly reduces the extent of unspecific ion signals in peptide mass fingerprints compared to typically used solid matrices, such as 2,5-dihydrox-ybenzoic acid (DHB) or alpha-cyano-hydroxycinnamic acid (CHCA). In particular, matrix and lowmass ion signals and ion signals resulting from cation adduct formation are dramatically reduced. Consequently, the confidence level of protein identification by peptide mass mapping of in-solution and in-gel digests is generally higher.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It has become evident that the mystery of life will not be deciphered just by decoding its blueprint, the genetic code. In the life and biomedical sciences, research efforts are now shifting from pure gene analysis to the analysis of all biomolecules involved in the machinery of life. One area of these postgenomic research fields is proteomics. Although proteomics, which basically encompasses the analysis of proteins, is not a new concept, it is far from being a research field that can rely on routine and large-scale analyses. At the time the term proteomics was coined, a gold-rush mentality was created, promising vast and quick riches (i.e., solutions to the immensely complex questions of life and disease). Predictably, the reality has been quite different. The complexity of proteomes and the wide variations in the abundances and chemical properties of their constituents has rendered the use of systematic analytical approaches only partially successful, and biologically meaningful results have been slow to arrive. However, to learn more about how cells and, hence, life works, it is essential to understand the proteins and their complex interactions in their native environment. This is why proteomics will be an important part of the biomedical sciences for the foreseeable future. Therefore, any advances in providing the tools that make protein analysis a more routine and large-scale business, ideally using automated and rapid analytical procedures, are highly sought after. This review will provide some basics, thoughts and ideas on the exploitation of matrix-assisted laser desorption/ionization in biological mass spectrometry - one of the most commonly used analytical tools in proteomics - for high-throughput analyses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, a CE equipment, online hyphenated to an IT MS analyzer by a linear sheath liquid interface promoting ESI, was used to develop a method for quantitative determination of amino acids. Under appropriate conditions (BGE composition, 0.8% HCOOH, 20% CH(3)OH; sheath liquid composition, 0.8% HCOOH, 60% methanol; V(ESI), +4.50 W), analytical curves of all amino acids from 3 to 80 mg/L were recorded presenting acceptable linearity (r > 0.99). LODs in the range of 16-172 mu mol/L were obtained. BSA, a model protein, was submitted to different hydrolysis procedures (classical acid and basic, and catalyzed by the H(+) form of a cation exchanger resin) and its amino acid profiles determined. In general, the resin-mediated hydrolysis yields were overall similar or better than those obtained by classical acid or basic hydrolysis. The resulting experimental-to-theoretical BSA concentration ratios served as correction factors for the quantitation of amino acids in Brazil nut resin generated hydrolysates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glycerol is widely used as protein stabilizer, in both local and commercial preparations, so it has become necessary to develop methods for mass spectrometric analysis of protein preparations in the presence of glycerol. However, this stabilizing agent may cause signal suppression when present in high concentrations, and is also known to induce protein supercharging even at low concentrations. This work reports the,use of electrospray ionization (ESI) mass spectrometry to characterize glycerol-mediated protein oligomerization. this phenomenon seems to involve the formation of strong non-covalent interactions between protein and glycerol involving close contact between the monomers, leading to formation of protein oligomers adducted with glycerol molecules under the characteristic analytical conditions of the ESI interface. At high orders of oligomerization a lower number of glycerol molecules is required to maintain the high oligomeric states than for the dimers and trimers, and it is possible that for the higher oligomers the monomers become so close to one another that non-covalent bonds between the side chains of the amino acid residues in the proteins may be established. Copyright (C) 2005 John Wiley & Sons, Ltd.