930 resultados para Gut microbiota


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The gut microbiota of Australian fur seals (Arctocephalus pusillus doriferus) was examined at different age classes using fluorescent in situ hybridisation (FISH) and 16S rRNA gene pyrosequencing. The FISH results indicated that in the fur seal groups, the predominant phyla are Firmicutes (22.14-67.33%) followed by Bacteroidetes (3.11-15.45%) and then Actinobacteria (1.4-5.9%) consistent with other mammals. Phylum Proteobacteria had an initial abundance of 1.8% in the 2-month-old pups, but < 1% of bacterial numbers for the other fur seal age groups. Significant differences did occur in the abundance of Clostridia, Lactobacilli and Bifidobacteria between 2 months pups and 9 months pups and adult fur seals. Results from the 16S rRNA gene pyrosequencing supported the FISH data and identified significant differences in the composition of Firmicutes, Bacteroidetes, Actinobacteria, Proteobacteria, Verrucomicrobia and Fusobacteria at all ages. Class Clostridia in phylum Firmicutes dominates the microbiota of the 2 months and 9 months seal pups, whilst class Bacilli dominates the 6 months pups. In addition, a high level of dissimilarity was observed between all age classes. This study provides novel insight into the gut microbiota of Australian fur seals at different age classes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There has been a dramatic rise in the prevalence of IgE-mediated food allergy over recent decades, particularly among infants and young children. The cause of this increase is unknown but one putative factor is a change in the composition, richness and balance of the microbiota that colonize the human gut during early infancy. The coevolution of the human gastrointestinal tract and commensal microbiota has resulted in a symbiotic relationship in which gut microbiota play a vital role in early life immune development and function, as well as maintenance of gut wall epithelial integrity. Since IgE mediated food allergy is associated with immune dysregulation and impaired gut epithelial integrity there is substantial interest in the potential link between gut microbiota and food allergy. Although the exact link between gut microbiota and food allergy is yet to be established in humans, recent experimental evidence suggests that specific patterns of gut microbiota colonization may influence the risk and manifestations of food allergy. An understanding of the relationship between gut microbiota and food allergy has the potential to inform both the prevention and treatment of food allergy. In this paper we review the theory and evidence linking gut microbiota and IgE-mediated food allergy in early life. We then consider the implications and challenges for future research, including the techniques of measuring and analyzing gut microbiota, and the types of studies required to advance knowledge in the field.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Age-related physiological changes in the gastrointestinal tract, as well as modification in lifestyle, nutritional behaviour, and functionality of the host immune system, inevitably affect the gut microbiota. The study presented here is focused on the application and comparison of two different microarray approaches for the characterization of the human gut microbiota, the HITChip and the HTF-Microb.Array, with particular attention to the effects of the aging process on the composition of this ecosystem. By using the Human Intestinal Tract Chip (HITChip), recently developed at the Wageningen University, The Netherland, we explored the age-related changes of gut microbiota during the whole adult lifespan, from young adults, through elderly to centenarians. We observed that the microbial composition and diversity of the gut ecosystem of young adults and seventy-years old people is highly similar but differs significantly from that of the centenarians. After 100 years of symbiotic association with the human host, the microbiota is characterized by a rearrangement in the Firmicutes population and an enrichment of facultative anaerobes. The presence of such a compromised microbiota in the centenarians is associated with an increased inflammation status, also known as inflamm-aging, as determined by a range of peripheral blood inflammatory markers. In parallel, we overtook the development of our own phylogenetic microarray with a lower number of targets, aiming the description of the human gut microbiota structure at high taxonomic level. The resulting chip was called High Taxonomic level Fingerprinting Microbiota Array (HTF-Microb.Array), and was based on the Ligase Detection Reaction (LDR) technology, which allowed us to develop a fast and sensitive tool for the fingerprint of the human gut microbiota in terms of presence/absence of the principal groups. The validation on artificial DNA mixes, as well as the pilot study involving eight healthy young adults, demonstrated that the HTF-Microb.Array can be used to successfully characterize the human gut microbiota, allowing us to obtain results which are in approximate accordance with the most recent characterizations. Conversely, the evaluation of the relative abundance of the target groups on the bases of the relative fluorescence intensity probes response still has some hindrances, as demonstrated by comparing the HTF.Microb.Array and HITChip high taxonomic level fingerprints of the same centenarians.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The gut microbiota (GM) is essential for human health and contributes to several diseases; indeed it can be considered an extension of the self and, together with the genetic makeup, determines the physiology of an organism. In this thesis has been studied the peripheral immune system reconstitution in pediatric patients undergoing allogeneic hematopoietic stem cell transplantation (aHSCT) in the early phase; in parallel, have been also explored the gut microbiota variations as one of the of primary factors in governing the fate of the immunological recovery, predisposing or protecting from complications such as the onset of acute graft-versus-host disease (GvHD). Has been demonstrated, to our knowledge for the first time, that aHSCT in pediatric patients is associated to a profound modification of the GM ecosystem with a disruption of its mutualistic asset. aGvHD and non-aGvHD subjects showed differences in the process of GM recovery, in members abundance of the phylum Bacteroidetes, and in propionate fecal concentration; the latter are higher in the pre-HSCT composition of non-GvHD subjects than GvHD ones. Short-chain fatty acids (SCFAs), such as acetate, butyrate and propionate, are end-products of microbial fermentation of macronutrients and distribute systemically from the gut to blood. For this reason, has been studied their effect in vitro on human DCs, the key regulators of our immune system and the main player of aGvHD onset. Has been observed that propionate and, particularly, butyrate show a strong and direct immunomodulatory activity on DCs reducing inflammatory markers such as chemokines and interleukins. This study, with the needed caution, suggests that the pre-existing GM structure can be protective against aGvHD onset, exerting its protective role through SCFAs. They, indeed, may regulate cell traffic within secondary lymphoid tissues, influence T cell development during antigen recognition, and, thus, directly shape the immune system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fatalities from schistosome infections arise due to granulomatous, immune-mediated responses to eggs that become trapped in host tissues. Schistosome-specific immune responses are characterized by initial Th1 responses and our previous studies demonstrated that Myd88-deficient mice failed to initiate such responses in vivo. Paradoxically, schistosomal antigens fail to stimulate innate cells to release pro-inflammatory cytokines in vitro. Since S. mansoni infection is an intestinal disease, we hypothesized that commensal bacteria could act as bystander activators of the intestinal innate immune system to instigate Th1 responses. Using a broad spectrum of orally-administered antibiotics and antimycotics we analyzed schistosome-infected mice that were simultaneously depleted of gut bacteria. After depletion there was significantly less inflammation in the intestine which was accompanied by decreased intestinal granuloma development. In contrast, liver pathology remained unaltered. In addition, schistosome-specific immune responses were skewed and fecal egg excretion was diminished. This study demonstrates that host microbiota can act as a third partner in instigating helminth-specific immune responses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The impact of the gut microbiota on immune homeostasis within the gut and, importantly, also at systemic sites has gained tremendous research interest over the last few years. The intestinal microbiota is an integral component of a fascinating ecosystem that interacts with and benefits its host on several complex levels to achieve a mutualistic relationship. Host-microbial homeostasis involves appropriate immune regulation within the gut mucosa to maintain a healthy gut while preventing uncontrolled immune responses against the beneficial commensal microbiota potentially leading to chronic inflammatory bowel diseases (IBD). Furthermore, recent studies suggest that the microbiota composition might impact on the susceptibility to immune-mediated disorders such as autoimmunity and allergy. Understanding how the microbiota modulates susceptibility to these diseases is an important step toward better prevention or treatment options for such diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microbial functions in the host physiology are a result of the microbiota-host co-evolution. We show that cold exposure leads to marked shift of the microbiota composition, referred to as cold microbiota. Transplantation of the cold microbiota to germ-free mice is sufficient to increase insulin sensitivity of the host and enable tolerance to cold partly by promoting the white fat browning, leading to increased energy expenditure and fat loss. During prolonged cold, however, the body weight loss is attenuated, caused by adaptive mechanisms maximizing caloric uptake and increasing intestinal, villi, and microvilli lengths. This increased absorptive surface is transferable with the cold microbiota, leading to altered intestinal gene expression promoting tissue remodeling and suppression of apoptosis-the effect diminished by co-transplanting the most cold-downregulated strain Akkermansia muciniphila during the cold microbiota transfer. Our results demonstrate the microbiota as a key factor orchestrating the overall energy homeostasis during increased demand.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

IA, JNP, and MP were partly supported by the NIH, grants R01-AI-100947 to MP, and R21-GM-107683 to Matthias Chung, subcontract to MP. JNP was partly supported by an NSF graduate fellowship number DGE750616. IA, JNP, BRL, OCS and MP were supported in part by the Bill and Melinda Gates Foundation, award number 42917 to OCS. JP and AWW received core funding support from The Wellcome Trust (grant number 098051). AWW, and the Rowett Institute of Nutrition and Health, University of Aberdeen, receive core funding support from the Scottish Government Rural and Environmental Science and Analysis Service (RESAS).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mammalian gut microbiota harbors a diverse ecosystem where hundreds of bacterial species interact with each other and their host. Given that bacteria use signals to communicate and regulate group behaviors (quorum sensing), we asked whether such communication between different commensal species can influence the interactions occurring in this environment. We engineered the enteric bacterium, Escherichia coli, to manipulate the levels of the interspecies quorum sensing signal, autoinducer-2 (AI-2), in the mouse intestine and investigated the effect upon antibiotic-induced gut microbiota dysbiosis. E. coli that increased intestinal AI-2 levels altered the composition of the antibiotic-treated gut microbiota, favoring the expansion of the Firmicutes phylum. This significantly increased the Firmicutes/Bacteroidetes ratio, to oppose the strong effect of the antibiotic, which had almost cleared the Firmicutes. This demonstrates that AI-2 levels influence the abundance of the major phyla of the gut microbiota, the balance of which is known to influence human health.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Establishment of the intestinal microbiota commences at birth and this colonisation is influenced by a number of factors including mode of delivery, gestational age, mode of feeding, environmental factors and host genetics. As this initial establishment may well influence the health of an individual later in life, it is imperative to understand this process. Therefore, this thesis set out to investigate how early infant nutrition influences the development of a healthy gut microbiota. As part of the INFANTMET project, the intestinal microbiota of 199 breastfed infants was investigated using both culture-dependent and culture-independent approaches. This study revealed that delivery mode and gestational age had a significant impact on early microbial communities. In order to understand host genotype-microbiota interactions, the gut microbiota composition of dichorionic triplets was also investigated. The results suggested that initially host genetics play a significant role in the composition of an individual’s gut microbiota, but by month 12 environmental factors are the major determinant. To investigate the origin of hydrogen sulphide in a case of nondrug- induced sulfhemoglobinemia in a preterm infant, the gut microbiota composition was determined. This analysis revealed the presence of Morganella morganii, a producer of hydrogen sulphide and hemolysins, at a relative abundance 38%, which was not detected in control infants. Following on from this, the negative and short term consequences of intrapartum antibiotic prophylaxis exposure on the early infant intestinal microbiota composition were demonstrated, particularly in breast-fed infants, which are recovered by day 30. Finally, the composition of the breast milk microbiota over the first three months of life was characterised. A core of 12 genera were identified amongst women and the remainder comprised some 195 genera which were individual specific and subject to variations over time. The results presented in this thesis have demonstrated that the development of the infant gut microbiota is complex and highly individual. Clear alterations in the intestinal microbiota establishment process in C-section delivered, preterm and antibiotic exposed infants were shown. Taken together, long-term health benefits for infants, particularly those vulnerable groups, may be conferred through the design of probiotic and prebiotic food ingredients and supplements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diabetes is a condition of multifactorial origin, involving several molecular mechanisms related to the intestinal microbiota for its development. In type 2 diabetes, receptor activation and recognition by microorganisms from the intestinal lumen may trigger inflammatory responses, inducing the phosphorylation of serine residues in insulin receptor substrate-1, reducing insulin sensitivity. In type 1 diabetes, the lowered expression of adhesion proteins within the intestinal epithelium favours a greater immune response that may result in destruction of pancreatic β cells by CD8+ T-lymphocytes, and increased expression of interleukin-17, related to autoimmunity. Research in animal models and humans has hypothesized whether the administration of probiotics may improve the prognosis of diabetes through modulation of gut microbiota. We have shown in this review that a large body of evidence suggests probiotics reduce the inflammatory response and oxidative stress, as well as increase the expression of adhesion proteins within the intestinal epithelium, reducing intestinal permeability. Such effects increase insulin sensitivity and reduce autoimmune response. However, further investigations are required to clarify whether the administration of probiotics can be efficiently used for the prevention and management of diabetes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

International audience

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rapid environmental transition and modern lifestyles are likely driving changes in the biodiversity of the human gut microbiota. With clear effects on physiologic, immunologic, and metabolic processes in human health, aberrations in the gut microbiome and intestinal homeostasis have the capacity for multisystem effects. Changes in microbial composition are implicated in the increasing propensity for a broad range of inflammatory diseases, such as allergic disease, asthma, inflammatory bowel disease (IBD), obesity, and associated noncommunicable diseases (NCDs). There are also suggestive implications for neurodevelopment and mental health. These diverse multisystem influences have sparked interest in strategies that might favorably modulate the gut microbiota to reduce the risk of many NCDs. For example, specific prebiotics promote favorable intestinal colonization, and their fermented products have anti-inflammatory properties. Specific probiotics also have immunomodulatory and metabolic effects. However, when evaluated in clinical trials, the effects are variable, preliminary, or limited in magnitude. Fecal microbiota transplantation is another emerging therapy that regulates inflammation in experimental models. In human subjects it has been successfully used in cases of Clostridium difficile infection and IBD, although controlled trials are lacking for IBD. Here we discuss relationships between gut colonization and inflammatory NCDs and gut microbiota modulation strategies for their treatment and prevention. (J Allergy Clin Immunol 2015;135:3-13.)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Antibiotic resistance is an increasing threat to our ability to treat infectious diseases. Thus, understanding the effects of antibiotics on the gut microbiota, as well as the potential for such populations to act as a reservoir for resistance genes, is imperative. This thesis set out to investigate the gut microbiota of antibiotic treated infants compared to untreated controls using high-throughput DNA sequencing. The results demonstrated the significant effects of antibiotic treatment, resulting in increased proportions of Proteobacteria and decreased proportions of Bifidobacterium. The species diversity of bifidobacteria was also reduced. This thesis also highlights the ability of the human gut microbiota to act as an antibiotic resistance reservoir. Using metagenomic DNA extracted from faecal samples from adult males, PCR was employed to demonstrate the prevalence and diversity of aminoglycoside and β-lactam resistance genes in the adult gut microbiota and highlighted the merits of the approach adopted. Using infant faecal samples, we constructed and screened a second fosmid metagenomic bank for the same families of resistance genes and demonstrated that the infant gut microbiota is also a reservoir for resistance genes. Using in silico analysis we highlighted the existence of putative aminoglycoside and β-lactam resistance determinants within the genomes of Bifidobacterium species. In the case of the β- lactamases, these appear to be mis-annotated. However, through homologous recombination-mediated insertional inactivation, we have demonstrated that the putative aminoglycoside resistance proteins do contribute to resistance. In additional studies, we investigated the effects of short bowel syndrome on infant gut microbiota, the immune system and bile acid metabolism. We also sequenced the microbiota of the human vermiform appendix, highlighting its complexity. Finally, this thesis demonstrated the strain specific nature of 2 different probiotic CLA-producing Bifidobacterium breve on the murine gut microbiota.