992 resultados para Elasticity


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We outline a procedure for obtaining solutions of certain boundary value problems of a recently proposed theory of gradient elasticity in terms of solutions of classical elasticity. The method is applied to illustrate, among other things, how the gradient theory can remove the strain singularity from some typical examples of the classical theory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on the idea proposed by Hu [Scientia Sinica Series A XXX, 385-390 (1987)], a new type of boundary integral equation for plane problems of elasticity including rotational forces is derived and its boundary element formulation is presented. Numerical results for a rotating hollow disk are given to demonstrate the accuracy of the new type of boundary integral equation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents new results on the welfare e¤ects of third-degree price discrimination under constant elasticity demand. We show that when both the share of the strong market under uniform pricing and the elasticity di¤erence between markets are high enough,then price discrimination not only can increase social welfare but also consumer surplus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Because the Earth’s upper mantle is inaccessible to us, in order to understand the chemical and physical processes that occur in the Earth’s interior we must rely on both experimental work and computational modeling. This thesis addresses both of these geochemical methods. In the first chapter, I develop an internally consistent comprehensive molar volume model for spinels in the oxide system FeO-MgO-Fe2O3-Cr2O3-Al2O3-TiO2. The model is compared to the current MELTS spinel model with a demonstration of the impact of the model difference on the estimated spinel-garnet lherzolite transition pressure. In the second chapter, I calibrate a molar volume model for cubic garnets in the system SiO2-Al2O3-TiO2-Fe2O3-Cr2O3-FeO-MnO-MgO-CaO-Na2O. I use the method of singular value analysis to calibrate excess volume of mixing parameters for the garnet model. The implications the model has for the density of the lithospheric mantle are explored. In the third chapter, I discuss the nuclear inelastic X-ray scattering (NRIXS) method, and present analysis of three orthopyroxene samples with different Fe contents. Longitudinal and shear wave velocities, elastic parameters, and other thermodynamic information are extracted from the raw NRIXS data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two separate problems are discussed: axisymmetric equilibrium configurations of a circular membrane under pressure and subject to thrust along its edge, and the buckling of a circular cylindrical shell.

An ordinary differential equation governing the circular membrane is imbedded in a family of n-dimensional nonlinear equations. Phase plane methods are used to examine the number of solutions corresponding to a parameter which generalizes the thrust, as well as other parameters determining the shape of the nonlinearity and the undeformed shape of the membrane. It is found that in any number of dimensions there exists a value of the generalized thrust for which a countable infinity of solutions exist if some of the remaining parameters are made sufficiently large. Criteria describing the number of solutions in other cases are also given.

Donnell-type equations are used to model a circular cylindrical shell. The static problem of bifurcation of buckled modes from Poisson expansion is analyzed using an iteration scheme and pertubation methods. Analysis shows that although buckling loads are usually simple eigenvalues, they may have arbitrarily large but finite multiplicity when the ratio of the shell's length and circumference is rational. A numerical study of the critical buckling load for simple eigenvalues indicates that the number of waves along the axis of the deformed shell is roughly proportional to the length of the shell, suggesting the possibility of a "characteristic length." Further numerical work indicates that initial post-buckling curves are typically steep, although the load may increase or decrease. It is shown that either a sheet of solutions or two distinct branches bifurcate from a double eigenvalue. Furthermore, a shell may be subject to a uniform torque, even though one is not prescribed at the ends of the shell, through the interaction of two modes with the same number of circumferential waves. Finally, multiple time scale techniques are used to study the dynamic buckling of a rectangular plate as well as a circular cylindrical shell; transition to a new steady state amplitude determined by the nonlinearity is shown. The importance of damping in determining equilibrium configurations independent of initial conditions is illustrated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis presents a new approach for the numerical solution of three-dimensional problems in elastodynamics. The new methodology, which is based on a recently introduced Fourier continuation (FC) algorithm for the solution of Partial Differential Equations on the basis of accurate Fourier expansions of possibly non-periodic functions, enables fast, high-order solutions of the time-dependent elastic wave equation in a nearly dispersionless manner, and it requires use of CFL constraints that scale only linearly with spatial discretizations. A new FC operator is introduced to treat Neumann and traction boundary conditions, and a block-decomposed (sub-patch) overset strategy is presented for implementation of general, complex geometries in distributed-memory parallel computing environments. Our treatment of the elastic wave equation, which is formulated as a complex system of variable-coefficient PDEs that includes possibly heterogeneous and spatially varying material constants, represents the first fully-realized three-dimensional extension of FC-based solvers to date. Challenges for three-dimensional elastodynamics simulations such as treatment of corners and edges in three-dimensional geometries, the existence of variable coefficients arising from physical configurations and/or use of curvilinear coordinate systems and treatment of boundary conditions, are all addressed. The broad applicability of our new FC elasticity solver is demonstrated through application to realistic problems concerning seismic wave motion on three-dimensional topographies as well as applications to non-destructive evaluation where, for the first time, we present three-dimensional simulations for comparison to experimental studies of guided-wave scattering by through-thickness holes in thin plates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We develop new algorithms which combine the rigorous theory of mathematical elasticity with the geometric underpinnings and computational attractiveness of modern tools in geometry processing. We develop a simple elastic energy based on the Biot strain measure, which improves on state-of-the-art methods in geometry processing. We use this energy within a constrained optimization problem to, for the first time, provide surface parameterization tools which guarantee injectivity and bounded distortion, are user-directable, and which scale to large meshes. With the help of some new generalizations in the computation of matrix functions and their derivative, we extend our methods to a large class of hyperelastic stored energy functions quadratic in piecewise analytic strain measures, including the Hencky (logarithmic) strain, opening up a wide range of possibilities for robust and efficient nonlinear elastic simulation and geometry processing by elastic analogy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interest in the possible applications of a priori inequalities in linear elasticity theory motivated the present investigation. Korn's inequality under various side conditions is considered, with emphasis on the Korn's constant. In the "second case" of Korn's inequality, a variational approach leads to an eigenvalue problem; it is shown that, for simply-connected two-dimensional regions, the problem of determining the spectrum of this eigenvalue problem is equivalent to finding the values of Poisson's ratio for which the displacement boundary-value problem of linear homogeneous isotropic elastostatics has a non-unique solution.

Previous work on the uniqueness and non-uniqueness issue for the latter problem is examined and the results applied to the spectrum of the Korn eigenvalue problem. In this way, further information on the Korn constant for general regions is obtained.

A generalization of the "main case" of Korn's inequality is introduced and the associated eigenvalue problem is a gain related to the displacement boundary-value problem of linear elastostatics in two dimensions.

Relevância:

20.00% 20.00%

Publicador: