117 resultados para Docetaxel


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Prostate cancer is the most common cancer amongst men in the England and currently affects ~40,000 people around 6,000 of whom suffer from metastatic disease. Overall patients with metastatic disease have a life expectancy of less than 24 months and a poor prognosis.

Docetaxel was the first agent to show survival benefit in metastatic Hormone Refractory Prostate Cancer (mHRPC) and since approval by NICE in 2006 (TA101) has for many years been the mainstay of treatment.

To appraise the clinical and cost effectiveness of cabazitaxel within its marketing authorisation for treating hormone-relapsed metastatic prostate cancer previously treated with a docetaxel-containing regimen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As part of its single technology appraisal (STA) process, the National Institute for Health and Care Excellence (NICE) invited the company that manufactures cabazitaxel (Jevtana(®), Sanofi, UK) to submit evidence for the clinical and cost effectiveness of cabazitaxel for treatment of patients with metastatic hormone-relapsed prostate cancer (mHRPC) previously treated with a docetaxel-containing regimen. The School of Health and Related Research Technology Appraisal Group at the University of Sheffield was commissioned to act as the independent Evidence Review Group (ERG). The ERG produced a critical review of the evidence for the clinical and cost effectiveness of the technology based upon the company's submission to NICE. Clinical evidence for cabazitaxel was derived from a multinational randomised open-label phase III trial (TROPIC) of cabazitaxel plus prednisone or prednisolone compared with mitoxantrone plus prednisone or prednisolone, which was assumed to represent best supportive care. The NICE final scope identified a further three comparators: abiraterone in combination with prednisone or prednisolone; enzalutamide; and radium-223 dichloride for the subgroup of people with bone metastasis only (no visceral metastasis). The company did not consider radium-223 dichloride to be a relevant comparator. Neither abiraterone nor enzalutamide has been directly compared in a trial with cabazitaxel. Instead, clinical evidence was synthesised within a network meta-analysis (NMA). Results from TROPIC showed that cabazitaxel was associated with a statistically significant improvement in both overall survival and progression-free survival compared with mitoxantrone. Results from a random-effects NMA, as conducted by the company and updated by the ERG, indicated that there was no statistically significant difference between the three active treatments for both overall survival and progression-free survival. Utility data were not collected as part of the TROPIC trial, and were instead taken from the company's UK early access programme. Evidence on resource use came from the TROPIC trial, supplemented by both expert clinical opinion and a UK clinical audit. List prices were used for mitoxantrone, abiraterone and enzalutamide as directed by NICE, although commercial in-confidence patient-access schemes (PASs) are in place for abiraterone and enzalutamide. The confidential PAS was used for cabazitaxel. Sequential use of the advanced hormonal therapies (abiraterone and enzalutamide) does not usually occur in clinical practice in the UK. Hence, cabazitaxel could be used within two pathways of care: either when an advanced hormonal therapy was used pre-docetaxel, or when one was used post-docetaxel. The company believed that the former pathway was more likely to represent standard National Health Service (NHS) practice, and so their main comparison was between cabazitaxel and mitoxantrone, with effectiveness data from the TROPIC trial. Results of the company's updated cost-effectiveness analysis estimated a probabilistic incremental cost-effectiveness ratio (ICER) of £45,982 per quality-adjusted life-year (QALY) gained, which the committee considered to be the most plausible value for this comparison. Cabazitaxel was estimated to be both cheaper and more effective than abiraterone. Cabazitaxel was estimated to be cheaper but less effective than enzalutamide, resulting in an ICER of £212,038 per QALY gained for enzalutamide compared with cabazitaxel. The ERG noted that radium-223 is a valid comparator (for the indicated sub-group), and that it may be used in either of the two care pathways. Hence, its exclusion leads to uncertainty in the cost-effectiveness results. In addition, the company assumed that there would be no drug wastage when cabazitaxel was used, with cost-effectiveness results being sensitive to this assumption: modelling drug wastage increased the ICER comparing cabazitaxel with mitoxantrone to over £55,000 per QALY gained. The ERG updated the company's NMA and used a random effects model to perform a fully incremental analysis between cabazitaxel, abiraterone, enzalutamide and best supportive care using PASs for abiraterone and enzalutamide. Results showed that both cabazitaxel and abiraterone were extendedly dominated by the combination of best supportive care and enzalutamide. Preliminary guidance from the committee, which included wastage of cabazitaxel, did not recommend its use. In response, the company provided both a further discount to the confidential PAS for cabazitaxel and confirmation from NHS England that it is appropriate to supply and purchase cabazitaxel in pre-prepared intravenous-infusion bags, which would remove the cost of drug wastage. As a result, the committee recommended use of cabazitaxel as a treatment option in people with an Eastern Cooperative Oncology Group performance status of 0 or 1 whose disease had progressed during or after treatment with at least 225 mg/m(2) of docetaxel, as long as it was provided at the discount agreed in the PAS and purchased in either pre-prepared intravenous-infusion bags or in vials at a reduced price to reflect the average per-patient drug wastage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: Many patients with metastatic bone disease have to use radiopharmaceuticals associated with chemotherapy to relieve bone pain. The aim of this study was to assess the influence of docetaxel on the biodistribution of samarium-153-EDTMP in bones and other organs of rats. Methods: Wistar male rats were randomly allocated into 2 groups of 6 rats each. The DS (docetaxel/samarium) group received docetaxel (15 mg/kg) intraperitoneally in two cycles 11 days apart. The S (samarium/control) group rats were not treated with docetaxel. Nine days after chemotherapy, all the rats were injected with 0.1ml of samarium-153-EDTMP via orbital plexus (25μCi). After 2 hours, the animals were killed and samples of the brain, thyroid, lung, heart, stomach, colon, liver, kidney and both femurs were removed. The percentage radioactivity of each sample (% ATI/g) was determined in an automatic gamma-counter (Wizard-1470, Perkin-Elmer, Finland). Results: On the 9th day after the administration of the 2nd chemotherapy cycle, the rats had a significant weight loss (314.50±22.09g) compared (p<0.5) to pre-treatment weight (353.66± 22.8). The % ATI/g in the samples of rats treated with samarium-153-EDTMP had a significant reduction in the right femur, left femur, kidney, liver and lungs of animals treated with docetaxel, compared to the control rats. Conclusion: The combination of docetaxel and samarium-153-EDTMP was associated with a lower response rate in the biodistribution of the radiopharmaceutical to targeted tissues. Further investigation into the impact of docetaxel on biodistribution of samarium-153-EDTMP would complement the findings of this study

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: Many patients with metastatic bone disease have to use radiopharmaceuticals associated with chemotherapy to relieve bone pain. The aim of this study was to assess the influence of docetaxel on the biodistribution of samarium-153-EDTMP in bones and other organs of rats. Methods: Wistar male rats were randomly allocated into 2 groups of 6 rats each. The DS (docetaxel/samarium) group received docetaxel (15 mg/kg) intraperitoneally in two cycles 11 days apart. The S (samarium/control) group rats were not treated with docetaxel. Nine days after chemotherapy, all the rats were injected with 0.1ml of samarium-153-EDTMP via orbital plexus (25μCi). After 2 hours, the animals were killed and samples of the brain, thyroid, lung, heart, stomach, colon, liver, kidney and both femurs were removed. The percentage radioactivity of each sample (% ATI/g) was determined in an automatic gamma-counter (Wizard-1470, Perkin-Elmer, Finland). Results: On the 9th day after the administration of the 2nd chemotherapy cycle, the rats had a significant weight loss (314.50±22.09g) compared (p<0.5) to pre-treatment weight (353.66± 22.8). The % ATI/g in the samples of rats treated with samarium-153-EDTMP had a significant reduction in the right femur, left femur, kidney, liver and lungs of animals treated with docetaxel, compared to the control rats. Conclusion: The combination of docetaxel and samarium-153-EDTMP was associated with a lower response rate in the biodistribution of the radiopharmaceutical to targeted tissues. Further investigation into the impact of docetaxel on biodistribution of samarium-153-EDTMP would complement the findings of this study

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: To develop docetaxel (DTX)- and alendronate (ALN)-loaded, chitosan (CS)-conjugated polylactide- co-glycolide (PLGA) nanoparticles (NPs) to increase therapeutic efficacy in osteosarcoma cells. Methods: Drug-loaded PLGA NPs were prepared by nanoprecipitation and chemically conjugated by the carboxylic group of PLGA to the amine-bearing CS polymer. The nanocarrier was characterized by dynamic light scattering, transmission electron microscopy, scanning electron microscopy, and differential scanning calorimetry as well as by in vitro drug release and cell culture studies. Results: NP size was within the tumour targeting range (~200 nm) with an effective positive charge (20 mV), thus increasing cellular uptake efficiency. Morphological analysis revealed clear spherical particles with uniform dispersion. The NPs exhibited identical sustained release kinetics for both DTX and ALN. CS-conjugated PLGA with dual-drug-loaded (DTX and AL) NPs showed typical time-dependent cellular uptake and also displayed superior cytotoxicity in MG-63 cells compared with blank NPs, which were safe and biocompatible. Conclusion: Combined loading of DTX and ALN in NPs increased the therapeutic efficacy of the formulation for osteosarcoma treatment, thus indicating the potential benefit of a combinatorial drug regimen using nanocarriers for effective treatment of osteosarcoma.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PurSil®AL20 (PUS), a copolymer of 4,4'-dicyclohexylmethane diisocyanate (HMDI), 1,4-butane diol (BD), poly-tetramethylene oxide (PTMO) and poly-dimethyl siloxane (PDMS) was investigated for stability as a vehicle for Docetaxel (DTX) delivery through oesophageal drug eluting stent (DES). On exposure to stability test conditions, it was found that DTX release rate declined at 4 and 40 °C. In order to divulge reasons underlying this, changes in DTX solid state as well as PUS microstructure were followed. It was found that re-crystallization of DTX in PDMS rich regions was reducing the drug release at both 4 °C and 40 °C samples. So far microstructural features have not been correlated with stability and drug release, and in this study we found that at 40 °C increase in microstructural domain sizes and the inter-domain distances (from ∼85 Å to 129 Å) were responsible for hindering the DTX release in addition to DTX re-crystallization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Esophageal cancer (EC) mostly affects the elderly population and is frequently diagnosed at an advanced stage. Self-expanding metal stents (SEMS) are the most popular mode of palliation, but they are associated with reocclusion caused by tumor growth. To overcome this problem, docetaxel (DTX)-loaded polyurethane formulations were prepared for stent application. The films were evaluated against the cancer cell lines, OE-19 and OE-21, and normal esophageal cell line Het-1A. The DTX and the formulations were evaluated in vitro for the cytotoxicity and in vivo in nude mice. It was found that DTX and the formulations have a weak activity against the EC cell lines and an even weaker activity against Het-1A cell line. Preliminary in vivo studies showed skin toxicity in nude mice necessitating modification of the formulation. Reevaluation in a mouse xenograft model resulted in toxicity at high dose formulations while the low dose formulation exhibited modest advantage over commercial IV formulation; however, there was no significant difference between the commercial IV and blank formulation. DTX combination with an anti-cancer agent having complementary mode of action and non-overlapping toxicity could yield better outcome in future.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Emerging evidence supports that prostate cancer originates from a rare sub-population of cells, namely prostate cancer stem cells (CSCs). Conventional therapies for prostate cancer are believed to mainly target the majority of differentiated tumor cells but spare CSCs, which may account for the subsequent disease relapse after treatment. Therefore, successful elimination of CSCs may be an effective strategy to achieve complete remission from this disease. Gamma-tocotrienols (-T3) is one of the vitamin-E constituents which have been shown to have anticancer effects against a wide-range of human cancers. Recently, we have reported that -T3 treatment not only inhibits prostate cancer cell invasion but also sensitizes the cells to docetaxel-induced apoptosis, suggesting that -T3 may be an effective therapeutic agent against advanced stage prostate cancer. Here, we demonstrate for the first time that -T3 can down-regulate the expression of prostate CSC markers (CD133/CD44) in androgen independent (AI) prostate cancer cell lines (PC-3 & DU145), as evident from western blotting analysis. Meanwhile, the spheroid formation ability of the prostate cancer cells was significantly hampered by -T3 treatment. In addition, pre-treatment of PC-3 cells with -T3 was found to suppress tumor initiation ability of the cells. More importantly, while CD133-enriched PC-3 cells were highly resistant to docetaxel treatment, these cells were as sensitive to -T3 treatment as the CD133-depleted population. Our data suggest that -T3 may be an effective agent in targeting prostate CSCs, which may account for its anticancer and chemosensitizing effects reported in previous studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: The aim of this study is to seek an association between markers of metastatic potential, drug resistance-related protein and monocarboxylate transporters in prostate cancer (CaP). Methods: We evaluated the expression of invasive markers (CD147, CD44v3-10), drug-resistance protein (MDR1) and monocarboxylate transporters (MCT1 and MCT4) in CaP metastatic cell lines and CaP tissue microarrays (n=140) by immunostaining. The co-expression of CD147 and CD44v3-10 with that of MDR1, MCT1 and MCT4 in CaP cell lines was evaluated using confocal microscopy. The relationship between the expression of CD147 and CD44v3-10 and the sensitivity (IC50) to docetaxel in CaP cell lines was assessed using MTT assay. The relationship between expression of CD44v3-10, MDR1 and MCT4 and various clinicopathological CaP progression parameters was examined. Results: CD147 and CD44v3-10 were co-expressed with MDR1, MCT1 and MCT4 in primary and metastatic CaP cells. Both CD147 and CD44v3-10 expression levels were inversely related to docetaxel sensitivity (IC50) in metastatic CaP cell lines. Overexpression of CD44v3-10, MDR1 and MCT4 was found in most primary CaP tissues, and was significantly associated with CaP progression. Conclusions: Our results suggest that the overexpression of CD147, CD44v3-10, MDR1 and MCT4 is associated with CaP progression. Expression of both CD147 and CD44v3-10 is correlated with drug resistance during CaP metastasis and could be a useful potential therapeutic target in advanced disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Late stage Ovarian Cancer is essentially incurable primarily due to late diagnosis and its inherent heterogeneity. Single agent treatments are inadequate and generally lead to severe side effects at therapeutic doses. It is crucial to develop clinically relevant novel combination regimens involving synergistic modalities that target a wider repertoire of cells and lead to lowered individual doses. Stemming from this premise, this is the first report of two- and three-way synergies between Adenovirus-mediated Purine Nucleoside Phosphorylase based gene directed enzyme prodrug therapy (PNP-GDEPT), docetaxel and/or carboplatin in multidrug-resistant ovarian cancer cells. Methods The effects of PNP-GDEPT on different cellular processes were determined using Shotgun Proteomics analyses. The in vitro cell growth inhibition in differentially treated drug resistant human ovarian cancer cell lines was established using a cell-viability assay. The extent of synergy, additivity, or antagonism between treatments was evaluated using CalcuSyn statistical analyses. The involvement of apoptosis and implicated proteins in effects of different treatments was established using flow cytometry based detection of M30 (an early marker of apoptosis), cell cycle analyses and finally western blot based analyses. Results Efficacy of the trimodal treatment was significantly greater than that achieved with bimodal- or individual treatments with potential for 10-50 fold dose reduction compared to that required for individual treatments. Of note was the marked enhancement in apoptosis that specifically accompanied the combinations that included PNP-GDEPT and accordingly correlated with a shift in the expression of anti- and pro-apoptotic proteins. PNP-GDEPT mediated enhancement of apoptosis was reinforced by cell cycle analyses. Proteomic analyses of PNP-GDEPT treated cells indicated a dowregulation of proteins involved in oncogenesis or cancer drug resistance in treated cells with accompanying upregulation of apoptotic- and tumour- suppressor proteins. Conclusion Inclusion of PNP-GDEPT in regular chemotherapy regimens can lead to significant enhancement of the cancer cell susceptibility to the combined treatment. Overall, these data will underpin the development of regimens that can benefit patients with late stage ovarian cancer leading to significantly improved efficacy and increased quality of life.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Protease-activated receptor-2 (PAR2) is a G protein coupled receptor (GPCR) that is activated by proteolytic cleavage of its amino terminal domain by trypsin-like serine proteases. Cleavage of this receptor exposes a neoepitope, termed the tethered ligand (TL), which binds intramolecularly within the receptor to stimulate signal transduction via coupled G proteins. PAR2-mediated signal transduction is also experimentally stimulated by hexapeptides (agonist peptides; APs) that are homologous to the TL sequence. Due to the irreversible nature of PAR2 proteolysis, downstream signal transduction is tightly regulated. Following activation, PAR2 is rapidly uncoupled from downstream signalling by the post-translational modifications phosphorylation and ubiquination which facilitate interactions with â- arrestin. This scaffolding protein couples PAR2 to the internalisation machinery initiating its desensitisation and trafficking through the early and late endosomes followed by receptor degradation. PAR2 is widely expressed in mammalian tissues with key roles for this receptor in cardiovascular, respiratory, nervous and musculoskeletal systems. This receptor has also been linked to pathological states with aberrant expression and signalling noted in several cancers. In prostate cancer, PAR2 signalling induces migration and proliferation of tumour derived cell lines, while elevated receptor expression has been noted in malignant tissues. Importantly, a role for this receptor has also been suggested in prostate cancer bone metastasis as coexpression of PAR2 and a proteolytic activator has been demonstrated by immunohistochemical analysis. Based on these data, the primary focus of this project has been on two aspects of PAR2 biology. The first is characterisation of cellular mechanisms that regulate PAR2 signalling and trafficking. The second aspect is the role of this receptor in prostate cancer bone metastasis. In addition, to permit these studies, it was first necessary to evaluate the specificity of the commercially available anti-PAR2 antibodies SAM11, C17, N19 and H99. The evaluation of the four commercially available antibodies was assessed using four techniques: immunoprecipitation; Western blot analysis; immunofluorescence; and flow cytometry. These approaches demonstrated that three of the antibodies efficiently detect ectopically expressed PAR2 by each of these techniques. A significant finding from this study was that N19 was the only antibody able to specifically detect N-glycosylated endogenous PAR2 by Western blot analysis. This analysis was performed on lysates from prostate cancer derived cell lines and tissue derived from wildtype and PAR2 knockout mice. Importantly, further evaluation demonstrated that this antibody also efficiently detects endogenous PAR2 at the cell surface by flow cytometry. The anti-PAR2 antibody N19 was used to explore the in vitro role of palmitoylation, the post-translational addition of palmitate, in PAR2 signalling, trafficking, cell surface expression and desensitization. Significantly, use of the palmitoylation inhibitor 2-bromopalmitate indicated that palmitate addition is important in trafficking of PAR2 endogenously expressed by prostate cancer cell lines. This was supported by palmitate labelling experiments using two approaches which showed that PAR2 stably expressed by CHO cells is palmitoylated and that palmitoylation occurs on cysteine 361. Another key finding from this study is that palmitoylation is required for optimal PAR2 signalling as Ca2+ flux assays indicated that in response to trypsin agonism, palmitoylation deficient PAR2 is ~9 fold less potent than wildtype receptor with a reduction of about 33% in the maximum signal induced via the mutant receptor. Confocal microscopy, flow cytometry and cell surface biotinylation analyses demonstrated that palmitoylation is required for efficient cell surface expression of PAR2. Importantly, this study also identified that palmitoylation of this receptor within the Golgi apparatus is required for efficient agonist-induced rab11amediated trafficking of PAR2 to the cell surface. Interestingly, palmitoylation is also required for receptor desensitization, as agonist-induced â-arrestin recruitment and receptor degradation were markedly reduced in CHO-PAR2-C361A cells compared with CHO-PAR2 cells. Collectively, these data provide new insights on the life cycle of PAR2 and demonstrate that palmitoylation is critical for efficient signalling, trafficking, cell surface localization and degradation of this receptor. This project also evaluated PAR2 residues involved in ligand docking. Although the extracellular loop (ECL)2 of PAR2 is known to be required for agonist-induced signal transduction, the binding pocket for receptor agonists remains to be determined. In silico homology modelling, based on a crystal structure for the prototypical GPCR rhodopsin, and ligand docking were performed to identify PAR2 transmembrane (TM) amino acids potentially involved in agonist binding. These methods identified 12 candidate residues that were mutated to examine the binding site of the PAR2 TL, revealed by trypsin cleavage, as well as of the soluble ligands 2f-LIGRLO-NH2 and GB110, which are both structurally based on the AP SLIGRLNH2. Ligand binding was evaluated from the impact of the mutated residues on PAR2-mediated calcium mobilisation. An important finding from these experiments was that mutation of residues Y156 and Y326 significantly reduced 2f-LIGRLO-NH2 and GB110 agonist activity. L307 was also important for GB110 activity. Intriguingly, mutation of PAR2 residues did not alter trypsin-induced signalling to the same extent as for the soluble agonists. The reason for this difference remains to be further examined by in silico and in vitro experimentation and, potentially, crystal structure studies. However, these findings identified the importance of TM domains in PAR2 ligand docking and will enhance the design of both PAR2 agonists and potentially agents to inhibit signalling (antagonists). The potential importance of PAR2 in prostate cancer bone metastasis was examined using a mouse model. In patients, prostate cancer bone metastases cause bone growth by disrupting bone homeostasis. In an attempt to mimic prostate cancer growth in bone, PAR2 responsive 22Rv1 prostate cancer cells, which form mixed osteoblastic and osteolytic lesions, were injected into the proximal aspect of mouse tibiae. A role for PAR2 was assessed by treating these mice with the recently developed PAR2 antagonist GB88. As controls, animals bearing intra-tibial tumours were also treated with vehicle (olive oil) or the prostate cancer chemotherapeutic docetaxel. The effect of these treatments on bone was examined radiographically and by micro-CT. Consistent with previous studies, 22Rv1 tumours caused osteoblastic periosteal spicule formation and concurrent osteolytic bone loss. Significantly, blockade of PAR2 signalling reduced the osteoblastic and osteolytic phenotype of 22Rv1 tumours in bone. No bone defects were detected in mice treated with docetaxel. These qualitative data will be followed in the future by quantitative micro-CT analysis as well as histology and histomorphometry analysis of already collected tissues. Nonetheless, these preliminary experiments highlight a potential role for PAR2 in prostate cancer growth in bone. In summary, in vitro studies have defined mechanisms regulating PAR2 activation, downstream signalling and trafficking and in vivo studies point to a potential role for this receptor in prostate cancer bone metastasis. The outcomes of this project are that a greater understanding of the biology of PAR2 may lead to the development of strategies to modulate the function of this receptor in disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aurora Kinase (AK) based therapy targeting AK-A & B is effective against some cancers. We have explored its potential against previously unreported incurable, metastatic androgen depletion independent Prostate Cancer (ADIPC). We used androgen sensitive (AS) and ADI lines derived from Transgenic Adenocarcinoma of the Mouse Prostate (TRAMP) mice. The relevance of this model was unequivocally established through focussed array, quantitative PCR and western blotting studies; significantly greater alteration of genes (fold change and number) representing major cancer pathways was shown in ADI cells compared to AS lines. A marked enhancement of in vivo growth of the ADI subline showing the greatest degree of gene modulations [TRAMP C1 (TC1)-T5: TC1-T5] reflected this. In contrast to the parental AS TC1 line, TC1-T5 cells grew with 100% incidence in the prostate, as lung pseudometastases and migrated to the bone and other soft tissues. The potential involvement of AKs in this transition was indicated by the significant upregulation of AK-A/B and their downstream regulators, survivin and phosphorylated-histone H3 in TC1-T5 cells compared to TC1 cells. This led to enhanced sensitivity of TC1-T5 cells to the pan-AK inhibitor, VX680 and to significant reduction in in vivo tumour growth rates when AK-A and/or B were downregulated in TC1-T5 cells. This cell growth inhibition was markedly enhanced when both AKs were downregulated and also led to substantially greater sensitivity of these cells to docetaxel, the only chemotherapeutic with activity against ADI PC. Finally, use of VX680 with docetaxel led to impressive synergies suggesting promise for treating clinical ADI metastatic PC.