908 resultados para Discrete-time systems


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper is concerned with stochastic stability of a class of nonlinear discrete-time Markovian jump systems with interval time-varying delay and partially unknown transition probabilities. A new weighted summation inequality is first derived. We then employ the newly derived inequality to establish delay-dependent conditions which guarantee the stochastic stability of the system. These conditions are derived in terms of tractable matrix inequalities which can be computationally solved by various convex optimized algorithms. Numerical examples are provided to illustrate the effectiveness of the obtained results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we propose a new approach to analyse the stability of a general family of nonlinear positive discrete time-delay systems. First, we introduce a new class of nonlinear positive discrete time-delay systems, which generalises some existing discrete time-delay systems. Second, through a new technique that relies on the comparison and mathematical induction method, we establish explicit criteria for stability and instability of the systems. Three numerical examples are given to illustrate the feasibility of the obtained results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a method to derive componentwise ultimate upper bounds and componentwise ultimate lower bounds for linear positive systems with time-varying delays and bounded disturbances. The disturbance vector is assumed to vary within a known interval whose lower bound may be different from zero. We first derive a sufficient condition for the existence of componentwise ultimate bounds. This condition is given in terms of the spectral radius of the system matrices which is easy to check and allows us to compute directly both the smallest componentwise ultimate upper bound and the largest componentwise ultimate lower bound. Then, by using the comparison method, we extend the obtained result to a class of nonlinear time-delay systems which has linear positive bounds. Two numerical examples are given to illustrate the effectiveness of the obtained results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper establishes practical stability results for an important range of approximate discrete-time filtering problems involving mismatch between the true system and the approximating filter model. Using local consistency assumption, the practical stability established is in the sense of an asymptotic bound on the amount of bias introduced by the model approximation. Significantly, these practical stability results do not require the approximating model to be of the same model type as the true system. Our analysis applies to a wide range of estimation problems and justifies the common practice of approximating intractable infinite dimensional nonlinear filters by simpler computationally tractable filters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper establishes a practical stability result for discrete-time output feedback control involving mismatch between the exact system to be stabilised and the approximating system used to design the controller. The practical stability is in the sense of an asymptotic bound on the amount of error bias introduced by the model approximation, and is established using local consistency properties of the systems. Importantly, the practical stability established here does not require the approximating system to be of the same model type as the exact system. Examples are presented to illustrate the nature of our practical stability result.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider a discrete time queue with finite capacity and i.i.d. and Markov modulated arrivals, Efficient algorithms are developed to calculate the moments and the distributions of the first time to overflow and the regeneration length, Results are extended to the multiserver queue. Some illustrative numerical examples are provided.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The full-dimensional time-dependent Schrodinger equation for the electronic dynamics of single-electron systems in intense external fields is solved directly using a discrete method. Our approach combines the finite-difference and Lagrange mesh methods. The method is applied to calculate the quasienergies and ionization probabilities of atomic and molecular systems in intense static and dynamic electric fields. The gauge invariance and accuracy of the method is established. Applications to multiphoton ionization of positronium, the hydrogen atom and the hydrogen molecular ion are presented. At very high laser intensity, above the saturation threshold, we extend the method using a scaling technique to estimate the quasienergies of metastable states of the hydrogen molecular ion. The results are in good agreement with recent experiments. (C) 2004 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Numerical sound synthesis is often carried out using the finite difference time domain method. In order to analyse the stability of the derived models, energy methods can be used for both linear and nonlinear settings. For Hamiltonian systems the existence of a conserved numerical energy-like quantity can be used to guarantee the stability of the simulations. In this paper it is shown how to derive similar discrete conservation laws in cases where energy is dissipated due to friction or in the presence of an energy source due to an external force. A damped harmonic oscillator (for which an analytic solution is available) is used to present the proposed methodology. After showing how to arrive at a conserved quantity, the simulation of a nonlinear single reed shows an example of an application in the context of musical acoustics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In everyday life different flows of customers to avail some service facility or other at some service station are experienced. In some of these situations, congestion of items arriving for service, because an item cannot be serviced Immediately on arrival, is unavoidable. A queuing system can be described as customers arriving for service, waiting for service if it is not immediate, and if having waited for service, leaving the system after being served. Examples Include shoppers waiting in front of checkout stands in a supermarket, Programs waiting to be processed by a digital computer, ships in the harbor Waiting to be unloaded, persons waiting at railway booking office etc. A queuing system is specified completely by the following characteristics: input or arrival pattern, service pattern, number of service channels, System capacity, queue discipline and number of service stages. The ultimate objective of solving queuing models is to determine the characteristics that measure the performance of the system

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The term reliability of an equipment or device is often meant to indicate the probability that it carries out the functions expected of it adequately or without failure and within specified performance limits at a given age for a desired mission time when put to use under the designated application and operating environmental stress. A broad classification of the approaches employed in relation to reliability studies can be made as probabilistic and deterministic, where the main interest in the former is to device tools and methods to identify the random mechanism governing the failure process through a proper statistical frame work, while the latter addresses the question of finding the causes of failure and steps to reduce individual failures thereby enhancing reliability. In the probabilistic attitude to which the present study subscribes to, the concept of life distribution, a mathematical idealisation that describes the failure times, is fundamental and a basic question a reliability analyst has to settle is the form of the life distribution. It is for no other reason that a major share of the literature on the mathematical theory of reliability is focussed on methods of arriving at reasonable models of failure times and in showing the failure patterns that induce such models. The application of the methodology of life time distributions is not confined to the assesment of endurance of equipments and systems only, but ranges over a wide variety of scientific investigations where the word life time may not refer to the length of life in the literal sense, but can be concieved in its most general form as a non-negative random variable. Thus the tools developed in connection with modelling life time data have found applications in other areas of research such as actuarial science, engineering, biomedical sciences, economics, extreme value theory etc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper derives exact discrete time representations for data generated by a continuous time autoregressive moving average (ARMA) system with mixed stock and flow data. The representations for systems comprised entirely of stocks or of flows are also given. In each case the discrete time representations are shown to be of ARMA form, the orders depending on those of the continuous time system. Three examples and applications are also provided, two of which concern the stationary ARMA(2, 1) model with stock variables (with applications to sunspot data and a short-term interest rate) and one concerning the nonstationary ARMA(2, 1) model with a flow variable (with an application to U.S. nondurable consumers’ expenditure). In all three examples the presence of an MA(1) component in the continuous time system has a dramatic impact on eradicating unaccounted-for serial correlation that is present in the discrete time version of the ARMA(2, 0) specification, even though the form of the discrete time model is ARMA(2, 1) for both models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Structural damage identification is basically a nonlinear phenomenon; however, nonlinear procedures are not used currently in practical applications due to the complexity and difficulty for implementation of such techniques. Therefore, the development of techniques that consider the nonlinear behavior of structures for damage detection is a research of major importance since nonlinear dynamical effects can be erroneously treated as damage in the structure by classical metrics. This paper proposes the discrete-time Volterra series for modeling the nonlinear convolution between the input and output signals in a benchmark nonlinear system. The prediction error of the model in an unknown structural condition is compared with the values of the reference structure in healthy condition for evaluating the method of damage detection. Since the Volterra series separate the response of the system in linear and nonlinear contributions, these indexes are used to show the importance of considering the nonlinear behavior of the structure. The paper concludes pointing out the main advantages and drawbacks of this damage detection methodology. © (2013) Trans Tech Publications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)