974 resultados para Diffusion Tensor Imaging (DTI)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, a Langevin dynamics model of the diffusion of water in articular cartilage was developed. Numerical simulations of the translational dynamics of water molecules and their interaction with collagen fibers were used to study the quantitative relationship between the organization of the collagen fiber network and the diffusion tensor of water in model cartilage. Langevin dynamics was used to simulate water diffusion in both ordered and partially disordered cartilage models. In addition, an analytical approach was developed to estimate the diffusion tensor for a network comprising a given distribution of fiber orientations. The key findings are that (1) an approximately linear relationship was observed between collagen volume fraction and the fractional anisotropy of the diffusion tensor in fiber networks of a given degree of alignment, (2) for any given fiber volume fraction, fractional anisotropy follows a fiber alignment dependency similar to the square of the second Legendre polynomial of cos(θ), with the minimum anisotropy occurring at approximately the magic angle (θMA), and (3) a decrease in the principal eigenvalue and an increase in the transverse eigenvalues is observed as the fiber orientation angle θ progresses from 0◦ to 90◦. The corresponding diffusion ellipsoids are prolate for θ < θMA, spherical for θ ≈ θMA, and oblate for θ > θMA. Expansion of the model to include discrimination between the combined effects of alignment disorder and collagen fiber volume fraction on the diffusion tensor is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Monte Carlo simulations were used to investigate the relationship between the morphological characteristics and the diffusion tensor (DT) of partially aligned networks of cylindrical fibres. The orientation distributions of the fibres in each network were approximately uniform within a cone of a given semi-angle (θ0). This semi-angle was used to control the degree of alignment of the fibres. The networks studied ranged from perfectly aligned (θ0 = 0) to completely disordered (θ0 = 90°). Our results are qualitatively consistent with previous numerical models in the overall behaviour of the DT. However, we report a non-linear relationship between the fractional anisotropy (FA) of the DT and collagen volume fraction, which is different to the findings from previous work. We discuss our results in the context of diffusion tensor imaging of articular cartilage. We also demonstrate how appropriate diffusion models have the potential to enable quantitative interpretation of the experimentally measured diffusion-tensor FA in terms of collagen fibre alignment distributions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article describes the first steps toward comprehensive characterization of molecular transport within scaffolds for tissue engineering. The scaffolds were fabricated using a novel melt electrospinning technique capable of constructing 3D lattices of layered polymer fibers with well - defined internal microarchitectures. The general morphology and structure order was then determined using T 2 - weighted magnetic resonance imaging and X - ray microcomputed tomography. Diffusion tensor microimaging was used to measure the time - dependent diffusivity and diffusion anisotropy within the scaffolds. The measured diffusion tensors were anisotropic and consistent with the cross - hatched geometry of the scaffolds: diffusion was least restricted in the direction perpendicular to the fiber layers. The results demonstrate that the cross - hatched scaffold structure preferentially promotes molecular transport vertically through the layers ( z - axis), with more restricted diffusion in the directions of the fiber layers ( x – y plane). Diffusivity in the x – y plane was observed to be invariant to the fiber thickness. The characteristic pore size of the fiber scaffolds can be probed by sampling the diffusion tensor at multiple diffusion times. Prospective application of diffusion tensor imaging for the real - time monitoring of tissue maturation and nutrient transport pathways within tissue engineering scaffolds is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We extended genetic linkage analysis - an analysis widely used in quantitative genetics - to 3D images to analyze single gene effects on brain fiber architecture. We collected 4 Tesla diffusion tensor images (DTI) and genotype data from 258 healthy adult twins and their non-twin siblings. After high-dimensional fluid registration, at each voxel we estimated the genetic linkage between the single nucleotide polymorphism (SNP), Val66Met (dbSNP number rs6265), of the BDNF gene (brain-derived neurotrophic factor) with fractional anisotropy (FA) derived from each subject's DTI scan, by fitting structural equation models (SEM) from quantitative genetics. We also examined how image filtering affects the effect sizes for genetic linkage by examining how the overall significance of voxelwise effects varied with respect to full width at half maximum (FWHM) of the Gaussian smoothing applied to the FA images. Raw FA maps with no smoothing yielded the greatest sensitivity to detect gene effects, when corrected for multiple comparisons using the false discovery rate (FDR) procedure. The BDNF polymorphism significantly contributed to the variation in FA in the posterior cingulate gyrus, where it accounted for around 90-95% of the total variance in FA. Our study generated the first maps to visualize the effect of the BDNF gene on brain fiber integrity, suggesting that common genetic variants may strongly determine white matter integrity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Brain asymmetry, or the structural and functional specialization of each brain hemisphere, has fascinated neuroscientists for over a century. Even so, genetic and environmental factors that influence brain asymmetry are largely unknown. Diffusion tensor imaging (DTI) now allows asymmetry to be studied at a microscopic scale by examining differences in fiber characteristics across hemispheres rather than differences in structure shapes and volumes. Here we analyzed 4. Tesla DTI scans from 374 healthy adults, including 60 monozygotic twin pairs, 45 same-sex dizygotic pairs, and 164 mixed-sex DZ twins and their siblings; mean age: 24.4 years ± 1.9 SD). All DTI scans were nonlinearly aligned to a geometrically-symmetric, population-based image template. We computed voxel-wise maps of significant asymmetries (left/right differences) for common diffusion measures that reflect fiber integrity (fractional and geodesic anisotropy; FA, GA and mean diffusivity, MD). In quantitative genetic models computed from all same-sex twin pairs (N=210 subjects), genetic factors accounted for 33% of the variance in asymmetry for the inferior fronto-occipital fasciculus, 37% for the anterior thalamic radiation, and 20% for the forceps major and uncinate fasciculus (all L > R). Shared environmental factors accounted for around 15% of the variance in asymmetry for the cortico-spinal tract (R > L) and about 10% for the forceps minor (L > R). Sex differences in asymmetry (men > women) were significant, and were greatest in regions with prominent FA asymmetries. These maps identify heritable DTI-derived features, and may empower genome-wide searches for genetic polymorphisms that influence brain asymmetry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Studies of cerebral asymmetry can open doors to understanding the functional specialization of each brain hemisphere, and how this is altered in disease. Here we examined hemispheric asymmetries in fiber architecture using diffusion tensor imaging (DTI) in 100 subjects, using high-dimensional fluid warping to disentangle shape differences from measures sensitive to myelination. Confounding effects of purely structural asymmetries were reduced by using co-registered structural images to fluidly warp 3D maps of fiber characteristics (fractional and geodesic anisotropy) to a structurally symmetric minimal deformation template (MDT). We performed a quantitative genetic analysis on 100 subjects to determine whether the sources of the remaining signal asymmetries were primarily genetic or environmental. A twin design was used to identify the heritable features of fiber asymmetry in various regions of interest, to further assist in the discovery of genes influencing brain micro-architecture and brain lateralization. Genetic influences and left/right asymmetries were detected in the fiber architecture of the frontal lobes, with minor differences depending on the choice of registration template.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fractional anisotropy (FA), a very widely used measure of fiber integrity based on diffusion tensor imaging (DTI), is a problematic concept as it is influenced by several quantities including the number of dominant fiber directions within each voxel, each fiber's anisotropy, and partial volume effects from neighboring gray matter. With High-angular resolution diffusion imaging (HARDI) and the tensor distribution function (TDF), one can reconstruct multiple underlying fibers per voxel and their individual anisotropy measures by representing the diffusion profile as a probabilistic mixture of tensors. We found that FA, when compared with TDF-derived anisotropy measures, correlates poorly with individual fiber anisotropy, and may sub-optimally detect disease processes that affect myelination. By contrast, mean diffusivity (MD) as defined in standard DTI appears to be more accurate. Overall, we argue that novel measures derived from the TDF approach may yield more sensitive and accurate information than DTI-derived measures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Statistical analysis of diffusion tensor imaging (DTI) data requires a computational framework that is both numerically tractable (to account for the high dimensional nature of the data) and geometric (to account for the nonlinear nature of diffusion tensors). Building upon earlier studies exploiting a Riemannian framework to address these challenges, the present paper proposes a novel metric and an accompanying computational framework for DTI data processing. The proposed approach grounds the signal processing operations in interpolating curves. Well-chosen interpolating curves are shown to provide a computational framework that is at the same time tractable and information relevant for DTI processing. In addition, and in contrast to earlier methods, it provides an interpolation method which preserves anisotropy, a central information carried by diffusion tensor data. © 2013 Springer Science+Business Media New York.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diffusion tensor imaging (DTI) studies have identified changes in white matter tracts in schizophrenia patients and those at high risk of transition. Schizotypal samples represent a group on the schizophrenia continuum that share some aetiological risk factors but without the confounds of illness. The aim of the current study was to compare tract microstructural coherence as measured by
fractional anisotropy (FA) between 12 psychometrically defined schizotypes and controls. We investigated bilaterally the uncinate and arcuate fasciculi (UF and AF) via a probabilistic tractography algorithm (PICo), with FA values compared between groups. Partial correlations were also examined between measures of subclinical hallucinatory/delusional experiences and FA values. High schizotypes
were found to have significantly higher FA values in bilateral UF only, but failed to reach significance in each hemisphere. In the whole sample there was a positive correlation between increasing FA values and measures of hallucinatory experience in the right AF. These findings suggest subtle changes in microstructural coherence are present in schizotypes. Correlations between mild hallucinatory experience and increasing FA values could indicate increasing coherence could be associated with symptom formation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cerebral microangiopathy (CMA) has been associated with executive dysfunction and fronto-parietal neural network disruption. Advances in magnetic resonance imaging allow more detailed analyses of gray (e.g., voxel-based morphometry-VBM) and white matter (e.g., diffusion tensor imaging-DTI) than traditional visual rating scales. The current study investigated patients with early CMA and healthy control subjects with all three approaches. Neuropsychological assessment focused on executive functions, the cognitive domain most discussed in CMA. The DTI and age-related white matter changes rating scales revealed convergent results showing widespread white matter changes in early CMA. Correlations were found in frontal and parietal areas exclusively with speeded, but not with speed-corrected executive measures. The VBM analyses showed reduced gray matter in frontal areas. All three approaches confirmed the hypothesized fronto-parietal network disruption in early CMA. Innovative methods (DTI) converged with results from conventional methods (visual rating) while allowing greater spatial and tissue accuracy. They are thus valid additions to the analysis of neural correlates of cognitive dysfunction. We found a clear distinction between speeded and nonspeeded executive measures in relationship to imaging parameters. Cognitive slowing is related to disease severity in early CMA and therefore important for early diagnostics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: Neuroimaging has been widely used in studies to investigate depression in the elderly because it is a noninvasive technique, and it allows the detection of structural and functional brain alterations. Fractional anisotropy (FA) and mean diffusivity (MD) are neuroimaging indexes of the microstructural integrity of white matter, which are measured using diffusion tensor imaging (DTI). The aim of this study was to investigate differences in FA or MD in the entire brain without a previously determined region of interest (ROI) between depressed and non-depressed elderly patients. Method: Brain magnetic resonance imaging scans were obtained from 47 depressed elderly patients, diagnosed according to DSM-IV criteria, and 36 healthy elderly patients as controls. Voxelwise statistical analysis of FA data was performed using tract-based spatial statistics (TBSS). Results: After controlling for age, no significant differences among FA and MD parameters were observed in the depressed elderly patients. No significant correlations were found between cognitive performance and FA or MD parameters. Conclusion: There were no significant differences among FA or MD values between mildly or moderately depressed and non-depressed elderly patients when the brain was analyzed without a previously determined ROI. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nel presente lavoro di tesi ho sviluppato un metodo di analisi di dati di DW-MRI (Diffusion-Weighted Magnetic Resonance Imaging)cerebrale, tramite un algoritmo di trattografia, per la ricostruzione del tratto corticospinale, in un campione di 25 volontari sani. Il diffusion tensor imaging (DTI) sfrutta la capacità del tensore di diffusione D di misurare il processo di diffusione dell’acqua, per stimare quantitativamente l’anisotropia dei tessuti. In particolare, nella sostanza bianca cerebrale la diffusione delle molecole di acqua è direzionata preferenzialmente lungo le fibre, mentre è ostacolata perpendicolarmente ad esse. La trattografia utilizza le informazioni ottenute tramite il DW imaging per fornire una misura della connettività strutturale fra diverse regioni del cervello. Nel lavoro si è concentrata l’attenzione sul fascio corticospinale, che è coinvolto nella motricità volontaria, trasmettendo gli impulsi dalla corteccia motoria ai motoneuroni del midollo spinale. Il lavoro si è articolato in 3 fasi. Nella prima ho sviluppato il pre-processing di immagini DW acquisite con un gradiente di diffusione sia 25 che a 64 direzioni in ognuno dei 25 volontari sani. Si è messo a punto un metodo originale ed innovativo, basato su “Regions of Interest” (ROIs), ottenute attraverso la segmentazione automatizzata della sostanza grigia e ROIs definite manualmente su un template comune a tutti i soggetti in esame. Per ricostruire il fascio si è usato un algoritmo di trattografia probabilistica che stima la direzione più probabile delle fibre e, con un numero elevato di direzioni del gradiente, riesce ad individuare, se presente, più di una direzione dominante (seconda fibra). Nella seconda parte del lavoro, ciascun fascio è stato suddiviso in 100 segmenti (percentili). Sono stati stimati anisotropia frazionaria (FA), diffusività media, probabilità di connettività, volume del fascio e della seconda fibra con un’analisi quantitativa “along-tract”, per ottenere un confronto accurato dei rispettivi percentili dei fasci nei diversi soggetti. Nella terza parte dello studio è stato fatto il confronto dei dati ottenuti a 25 e 64 direzioni del gradiente ed il confronto del fascio fra entrambi i lati. Dall’analisi statistica dei dati inter-subject e intra-subject è emersa un’elevata variabilità tra soggetti, dimostrando l’importanza di parametrizzare il tratto. I risultati ottenuti confermano che il metodo di analisi trattografica del fascio cortico-spinale messo a punto è risultato affidabile e riproducibile. Inoltre, è risultato che un’acquisizione con 25 direzioni di DTI, meglio tollerata dal paziente per la minore durata dello scan, assicura risultati attendibili. La principale applicazione clinica riguarda patologie neurodegenerative con sintomi motori sia acquisite, quali sindromi parkinsoniane sia su base genetica o la valutazione di masse endocraniche, per la definizione del grado di contiguità del fascio. Infine, sono state poste le basi per la standardizzazione dell’analisi quantitativa di altri fasci di interesse in ambito clinico o di studi di ricerca fisiopatogenetica.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background and Purpose: In acute stroke it is no longer sufficient to detect simply ischemia, but also to try to evaluate reperfusion/recanalization status and predict eventual hemorrhagic transformation. Arterial spin labeling (ASL) perfusion may have advantages over contrast-enhanced perfusion-weighted imaging (cePWI), and susceptibility weighted imaging (SWI) has an intrinsic sensitivity to paramagnetic effects in addition to its ability to detect small areas of bleeding and hemorrhage. We want to determine here if their combined use in acute stroke and stroke follow-up at 3T could bring new insight into the diagnosis and prognosis of stroke leading to eventual improved patient management. Methods: We prospectively examined 41 patients admitted for acute stroke (NIHSS >1). Early imaging was performed between 1 h and 2 weeks. The imaging protocol included ASL, cePWI, SWI, T2 and diffusion tensor imaging (DTI), in addition to standard stroke protocol. Results: We saw four kinds of imaging patterns based on ASL and SWI: patients with either hypoperfusion and hyperperfusion on ASL with or without changes on SWI. Hyperperfusion was observed on ASL in 12/41 cases, with hyperperfusion status that was not evident on conventional cePWI images. Signs of hemorrhage or blood-brain barrier breakdown were visible on SWI in 15/41 cases, not always resulting in poor outcome (2/15 were scored mRS = 0–6). Early SWI changes, together with hypoperfusion, were associated with the occurrence of hemorrhage. Hyperperfusion on ASL, even when associated with hemorrhage detected on SWI, resulted in good outcome. Hyperperfusion predicted a better outcome than hypoperfusion (p = 0.0148). Conclusions: ASL is able to detect acute-stage hyperperfusion corresponding to luxury perfusion previously reported by PET studies. The presence of hyperperfusion on ASL-type perfusion seems indicative of reperfusion/collateral flow that is protective of hemorrhagic transformation and a marker of favorable tissue outcome. The combination of hypoperfusion and changes on SWI seems on the other hand to predict hemorrhage and/or poor outcome.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In schizophrenic psychoses, structural and functional alterations of the amygdala have been demonstrated by several neuroimaging studies. However, postmortem examinations on the brains of schizophrenics did not confirm the volume changes reported by volumetric magnetic resonance imaging (MRI) studies. In order to address these contradictory findings and to further elucidate the possibly underlying pathophysiological process of the amygdala, we employed a trimodal MRI design including high-resolution volumetry, diffusion tensor imaging (DTI), and quantitative magnetization transfer imaging (qMTI) in a sample of 14 schizophrenic patients and 14 matched controls. Three-dimensional MRI volumetry revealed a significant reduction of amygdala raw volumes in the patient group, while amygdala volumes normalized for intracranial volume did not differ between the two groups. The regional diffusional anisotropy of the amygdala, expressed as inter-voxel coherence (COH), showed a marked and significant reduction in schizophrenics. Assessment of qMTI parameters yielded significant group differences for the T2 time of the bound proton pool and the T1 time of the free proton pool, while the semi-quantitative magnetization transfer ratio (MTR) did not differ between the groups. The application of multimodal MRI protocols is diagnostically relevant for the differentiation between schizophrenic patients and controls and provides a new strategy for the detection and characterization of subtle structural alterations in defined regions of the living brain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Postmortem examinations and magnetic resonance imaging (MRI) studies suggest involvement of the entorhinal cortex (EC) in schizophrenic psychoses. However, the extent and nature of the possible pathogenetical process underlying the observed alterations of this limbic key region for processing of multimodal sensory information remains unclear. Three-dimensional high-resolution MRI volumetry and evaluation of the regional diffusional anisotropy based on diffusion tensor imaging (DTI) were performed on the EC of 15 paranoid schizophrenic patients and 15 closely matched control subjects. In schizophrenic patients, EC volumes showed a slight, but not significant, decrease. However, the anisotropy values, expressed as inter-voxel coherences (COH), were found to be significantly decreased by 17.9% (right side) and 12.5% (left side), respectively, in schizophrenics. Reduction of entorhinal diffusional anisotropy can be hypothesized to be functionally related to disturbances in the perforant path, the principal efferent EC fiber tract supplying the limbic system with neuronal input from multimodal association centers. Combinations of different MRI modalities are a promising approach for the detection and characterization of subtle brain tissue alterations.