978 resultados para DNA directed DNA polymerase beta


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lesion bypass is an important mechanism to overcome replication blockage by DNA damage. Translesion synthesis requires a DNA polymerase (Pol). Human Pol ι encoded by the RAD30B gene is a recently identified DNA polymerase that shares sequence similarity to Pol η. To investigate whether human Pol ι plays a role in lesion bypass we examined the response of this polymerase to several types of DNA damage in vitro. Surprisingly, 8-oxoguanine significantly blocked human Pol ι. Nevertheless, translesion DNA synthesis opposite 8-oxoguanine was observed with increasing concentrations of purified human Pol ι, resulting in predominant C and less frequent A incorporation opposite the lesion. Opposite a template abasic site human Pol ι efficiently incorporated a G, less frequently a T and even less frequently an A. Opposite an AAF-adducted guanine, human Pol ι was able to incorporate predominantly a C. In both cases, however, further DNA synthesis was not observed. Purified human Pol ι responded to a template TT (6–4) photoproduct by inserting predominantly an A opposite the 3′ T of the lesion before aborting DNA synthesis. In contrast, human Pol ι was largely unresponsive to a template TT cis-syn cyclobutane dimer. These results suggest a role for human Pol ι in DNA lesion bypass.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DNA polymerase ɛ (Polɛ) is thought to be involved in DNA replication, repair, and cell-cycle checkpoint control in eukaryotic cells. Although the requirement of other replicative DNA polymerases, DNA polymerases α and δ (Polα and δ), for chromosomal DNA replication has been well documented by genetic and biochemical studies, the precise role, if any, of Polɛ in chromosomal DNA replication is still obscure. Here we show, with the use of a cell-free replication system with Xenopus egg extracts, that Xenopus Polɛ is indeed required for chromosomal DNA replication. In Polɛ-depleted extracts, the elongation step of chromosomal DNA replication is markedly impaired, resulting in significant reduction of the overall DNA synthesis as well as accumulation of small replication intermediates. Moreover, despite the decreased DNA synthesis, excess amounts of Polα are loaded onto the chromatin template in Polɛ-depleted extracts, indicative of the failure of proper assembly of DNA synthesis machinery at the fork. These findings strongly suggest that Polɛ, along with Polα and Polδ, is necessary for coordinated chromosomal DNA replication in eukaryotic cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many DNA polymerases (Pol) have an intrinsic 3′→5′ exonuclease (Exo) activity which corrects polymerase errors and prevents mutations. We describe a role of the 3′→5′ Exo of Pol δ as a supplement or backup for the Rad27/Fen1 5′ flap endonuclease. A yeast rad27 null allele was lethal in combination with Pol δ mutations in Exo I, Exo II, and Exo III motifs that inactivate its exonuclease, but it was viable with mutations in other parts of Pol δ. The rad27-p allele, which has little phenotypic effect by itself, was also lethal in combination with mutations in the Pol δ Exo I and Exo II motifs. However, rad27-p Pol δ Exo III double mutants were viable. They exhibited strong synergistic increases in CAN1 duplication mutations, intrachromosomal and interchromosomal recombination, and required the wild-type double-strand break repair genes RAD50, RAD51, and RAD52 for viability. Observed effects were similar to those of the rad27-null mutant deficient in the removal of 5′ flaps in the lagging strand. These results suggest that the 3′→5′ Exo activity of Pol δ is redundant with Rad27/Fen1 for creating ligatable nicks between adjacent Okazaki fragments, possibly by reducing the amount of strand-displacement in the lagging strand.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Formaldehyde is produced in most living systems and is present in the environment. Evidence that formaldehyde causes cancer in experimental animals infers that it may be a carcinogenic hazard to humans. Formaldehyde reacts with the exocyclic amino group of deoxyguanosine, resulting in the formation of N2-methyl-2′-deoxyguanosine (N2-Me-dG) via reduction of the Schiff base. The same reaction is likely to occur in living cells, because cells contain endogenous reductants such as ascorbic acid and gluthathione. To explore the miscoding properties of formaldehyde-derived DNA adducts a site-specifically modified oligodeoxynucleotide containing a N2-Me-dG was prepared and used as the template in primer extension reactions catalyzed by the Klenow fragment of Escherichia coli DNA polymerase I. The primer extension reaction was slightly stalled one base before the N2-Me-dG lesion, but DNA synthesis past this lesion was readily completed. The fully extended products were analyzed to quantify the miscoding specificities of N2-Me-dG. Preferential incorporation of dCMP, the correct base, opposite the lesion was observed, along with small amounts of misincorporation of dTMP (9.4%). No deletions were detected. Steady-state kinetic studies indicated that the frequency of nucleotide insertion for dTMP was only 1.2 times lower than for dCMP and the frequency of chain extension from the 3′-terminus of a dT:N2-Me-dG pair was only 2.1 times lower than from a dC:N2-Me-dG pair. We conclude that N2-Me-dG is a miscoding lesion capable of generating G→A transition mutations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several microbial systems have been shown to yield advantageous mutations in slowly growing or nongrowing cultures. In one assay system, the stationary-phase mutation mechanism differs from growth-dependent mutation, demonstrating that the two are different processes. This system assays reversion of a lac frameshift allele on an F′ plasmid in Escherichia coli. The stationary-phase mutation mechanism at lac requires recombination proteins of the RecBCD double-strand-break repair system and the inducible error-prone DNA polymerase IV, and the mutations are mostly −1 deletions in small mononucleotide repeats. This mutation mechanism is proposed to occur by DNA polymerase errors made during replication primed by recombinational double-strand-break repair. It has been suggested that this mechanism is confined to the F plasmid. However, the cells that acquire the adaptive mutations show hypermutation of unrelated chromosomal genes, suggesting that chromosomal sites also might experience recombination protein-dependent stationary-phase mutation. Here we test directly whether the stationary-phase mutations in the bacterial chromosome also occur via a recombination protein- and pol IV-dependent mechanism. We describe an assay for chromosomal mutation in cells carrying the F′ lac. We show that the chromosomal mutation is recombination protein- and pol IV-dependent and also is associated with general hypermutation. The data indicate that, at least in these male cells, recombination protein-dependent stationary-phase mutation is a mechanism of general inducible genetic change capable of affecting genes in the bacterial chromosome.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DNA polymerase η (Polη) functions in the error-free bypass of UV-induced DNA lesions, and a defect in Polη in humans causes the cancer-prone syndrome, the variant form of xeroderma pigmentosum. Both yeast and human Polη replicate through a cis-syn thymine-thymine dimer (TT dimer) by inserting two As opposite the two Ts of the dimer. Polη, however, is a low-fidelity enzyme, and it misinserts nucleotides with a frequency of ≈ 10−2 to 10−3 opposite the two Ts of the TT dimer as well as opposite the undamaged template bases. This low fidelity of nucleotide insertion seems to conflict with the role of Polη in the error-free bypass of UV lesions. To resolve this issue, we have examined the ability of human and yeast Polη to extend from paired and mispaired primer termini opposite a TT dimer by using steady-state kinetic assays. We find that Polη extends from mispaired primer termini on damaged and undamaged DNAs with a frequency of ≈ 10−2 to 10−3 relative to paired primer termini. Thus, after the incorporation of an incorrect nucleotide, Polη would dissociate from the DNA rather than extend from the mispair. The resulting primer-terminal mispair then could be subject to proofreading by a 3′→5′ exonuclease. Replication through a TT dimer by Polη then would be more accurate than that predicted from the fidelity of nucleotide incorporation alone.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The coordinated assembly of the DNA polymerase (gp43), the sliding clamp (gp45), and the clamp loader (gp44/62) to form the bacteriophage T4 DNA polymerase holoenzyme is a multistep process. A partially opened toroid-shaped gp45 is loaded around DNA by gp44/62 in an ATP-dependent manner. Gp43 binds to this complex to generate the holoenzyme in which gp45 acts to topologically link gp43 to DNA, effectively increasing the processivity of DNA replication. Stopped-flow fluorescence resonance energy transfer was used to investigate the opening and closing of the gp45 ring during holoenzyme assembly. By using two site-specific mutants of gp45 along with a previously characterized gp45 mutant, we tracked changes in distances across the gp45 subunit interface through seven conformational changes associated with holoenzyme assembly. Initially, gp45 is partially open within the plane of the ring at one of the three subunit interfaces. On addition of gp44/62 and ATP, this interface of gp45 opens further in-plane through the hydrolysis of ATP. Addition of DNA and hydrolysis of ATP close gp45 in an out-of-plane conformation. The final holoenzyme is formed by the addition of gp43, which causes gp45 to close further in plane, leaving the subunit interface open slightly. This open interface of gp45 in the final holoenzyme state is proposed to interact with the C-terminal tail of gp43, providing a point of contact between gp45 and gp43. This study further defines the dynamic process of bacteriophage T4 polymerase holoenzyme assembly.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The β and proliferating cell nuclear antigen (PCNA) sliding clamps were first identified as components of their respective replicases, and thus were assigned a role in chromosome replication. Further studies have shown that the eukaryotic clamp, PCNA, interacts with several other proteins that are involved in excision repair, mismatch repair, cellular regulation, and DNA processing, indicating a much wider role than replication alone. Indeed, the Escherichia coli β clamp is known to function with DNA polymerases II and V, indicating that β also interacts with more than just the chromosomal replicase, DNA polymerase III. This report demonstrates three previously undetected protein–protein interactions with the β clamp. Thus, β interacts with MutS, DNA ligase, and DNA polymerase I. Given the diverse use of these proteins in repair and other DNA transactions, this expanded list of β interactive proteins suggests that the prokaryotic β ring participates in a wide variety of reactions beyond its role in chromosomal replication.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Escherichia coli possesses three SOS-inducible DNA polymerases (Pol II, IV, and V) that were recently found to participate in translesion synthesis and mutagenesis. Involvement of these polymerases appears to depend on the nature of the lesion and its local sequence context, as illustrated by the bypass of a single N-2-acetylaminofluorene adduct within the NarI mutation hot spot. Indeed, error-free bypass requires Pol V (umuDC), whereas mutagenic (−2 frameshift) bypass depends on Pol II (polB). In this paper, we show that purified DNA Pol II is able in vitro to generate the −2 frameshift bypass product observed in vivo at the NarI sites. Although the ΔpolB strain is completely defective in this mutation pathway, introduction of the polB gene on a low copy number plasmid restores the −2 frameshift pathway. In fact, modification of the relative copy number of polB versus umuDC genes results in a corresponding modification in the use of the frameshift versus error-free translesion pathways, suggesting a direct competition between Pol II and V for the bypass of the same lesion. Whether such a polymerase competition model for translesion synthesis will prove to be generally applicable remains to be confirmed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Expression of Thermus aquaticus (Taq) DNA polymerase I (pol I) in Escherichia, coli complements the growth defect caused by a temperature-sensitive mutation in the host pol I. We replaced the nucleotide sequence encoding amino acids 659-671 of the O-helix of Taq DNA pol I, corresponding to the substrate binding site, with an oligonucleotide containing random nucleotides. Functional Taq pol I mutants were selected based on colony formation at the nonpermissive temperature. By using a library with 9% random substitutions at each of 39 positions, we identified 61 active Taq pol I mutants, each of which contained from one to four amino acid substitutions. Some amino acids, such as alanine-661 and threonine-664, were tolerant of several or even many diverse replacements. In contrast, no replacements or only conservative replacements were identified at arginine-659, lysine-663, and tyrosine-671. By using a library with totally random nucleotides at five different codons (arginine-659, arginine-660, lysine-663, phenylalanine-667, and glycine-668), we confirmed that arginine-659 and lysine-663 were immutable, and observed that only tyrosine substituted for phenylalanine-667. The two immutable residues and the two residues that tolerate only highly conservative replacements lie on the side of O-helix facing the incoming deoxynucleoside triphosphate, as determined by x-ray analysis. Thus, we offer a new approach to assess concordance of the active conformation of an enzyme, as interpreted from the crystal structure, with the active conformation inferred from in vivo function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Exposure to exogenous alkylating agents, particularly N-nitroso compounds, has been associated with increased incidence of primary human brain tumors, while intrinsic risk factors are currently unknown. The DNA repair protein O6-methylguanine-DNA methyltransferase (MGMT) is a major defense against the carcinogenicity of N-nitroso compounds and other alkylators. We report here that in 55% (64/117) of cases, histologically normal brain tissue adjacent to primary human brain tumors lacked detectable MGMT activity [methyl excision repair-defective (Mer-) status]. The incidence of Mer- status in normal brain tissue from brain tumor patients was age-dependent, increasing from 21% in children 0.25-19 years of age to 75% in adults over 50. In contrast, Mer- status was found in 12% (5/43) of normal brain specimens from patients operated for conditions other than primary brain tumors and was not age-dependent. The 4.6-fold elevation in incidence of Mer- status in brain tumor patients is highly significant (chi2 = 24; p < or = 0.001). MGMT activity was independent of age in the lymphocytes of brain tumor patients and was present in lymphocytes from six of nine tumor patients whose normal brain specimen was Mer-. DNA polymerase beta, apurinic/apyrimidinic endonuclease, and lactate dehydrogenase activities were present in all specimens tested, including Mer- specimens from brain tumor patients. Our data are consistent with a model of carcinogenesis in human brain in which epigenetically regulated lack of MGMT is a predisposing factor and alkylation-related mutagenesis is a driving force.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DPB11, a gene that suppresses mutations in two essential subunits of Saccharomyces cerevisiae DNA polymerase II(epsilon) encoded by POL2 and DPB2, was isolated on a multicopy plasmid. The nucleotide sequence of the DPB11 gene revealed an open reading frame predicting an 87-kDa protein. This protein is homologous to the Schizosaccharomyces pombe rad4+/cut5+ gene product that has a cell cycle checkpoint function. Disruption of DPB11 is lethal, indicating that DPB11 is essential for cell proliferation. In thermosensitive dpb11-1 mutant cells, S-phase progression is defective at the nonpermissive temperature, followed by cell division with unequal chromosomal segregation accompanied by loss of viability.dpb11-1 is synthetic lethal with any one of the dpb2-1, pol2-11, and pol2-18 mutations at all temperatures. Moreover, dpb11 cells are sensitive to hydroxyurea, methyl methanesulfonate, and UV irradiation. These results strongly suggest that Dpb11 is a part of the DNA polymerase II complex during chromosomal DNA replication and also acts in a checkpoint pathway during the S phase of the cell cycle to sense stalled DNA replication.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The crystal structure of the large fragment of the Thermus aquaticus DNA polymerase (Klentaq1), determined at 2.5-A resolution, demonstrates a compact two-domain architecture. The C-terminal domain is identical in fold to the equivalent region of the Klenow fragment of Escherichia coli DNA polymerase I (Klenow pol I). Although the N-terminal domain of Klentaq1 differs greatly in sequence from its counterpart in Klenow pol I, it has clearly evolved from a common ancestor. The structure of Klentaq1 reveals the strategy utilized by this protein to maintain activity at high temperatures and provides the structural basis for future improvements of the enzyme.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The role of Escherichia coli DNA polymerase (Pol) II in producing or avoiding mutations was investigated by replacing the chromosomal Pol II gene (polB+) by a gene encoding an exonuclease-deficient mutant Pol II (polBex1). The polBex1 allele increased adaptive mutations on an episome in nondividing cells under lactose selection. The presence of a Pol III antimutator allele (dnaE915) reduced adaptive mutations in both polB+ cells and cells deleted for polB (polB delta 1) to below the wild-type level, suggesting that both Pol II and Pol III are synthesizing episomal DNA in nondividing cells but that in wild-type cells Pol III generates the adaptive mutations. The adaptive mutations were mainly -1 frame-shifts occurring in short homopolymeric runs and were similar in wild-type, polB delta 1, and polBex1 strains. Mutations produced by both Pol III and Pol II ex1 were corrected by the mutHLS mismatch repair system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bacteriophage T7 DNA polymerase efficiently incorporates a chain-terminating dideoxynucleotide into DNA, in contrast to the DNA polymerases from Escherichia coli and Thermus aquaticus. The molecular basis for this difference has been determined by constructing active site hybrids of these polymerases. A single hydroxyl group on the polypeptide chain is critical for selectivity. Replacing tyrosine-526 of T7 DNA polymerase with phenylalanine increases discrimination against the four dideoxynucleotides by > 2000-fold, while replacing the phenylalanine at the homologous position in E. coli DNA polymerase I (position 762) or T. aquaticus DNA polymerase (position 667) with tyrosine decreases discrimination against the four dideoxynucleotides 250- to 8000-fold. These mutations allow the engineering of new DNA polymerases with enhanced properties for use in DNA sequence analysis.