678 resultados para DERMATOLOGY


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Notch receptor-mediated intracellular events represent an ancient cell signaling system, and alterations in Notch expression are associated with various malignancies in which Notch may function as an oncogene or less commonly as a tumor suppressor. Notch signaling regulates cell fate decisions in the epidermis, including influencing stem cell dynamics and growth/differentiation control of cells in skin. Because of increasing evidence that the Notch signaling network is deregulated in human malignancies, Notch receptors have become attractive targets for selective killing of malignant cells. Compared with proliferating normal human melanocytes, melanoma cell lines are characterized by markedly enhanced levels of activated Notch-1 receptor. By using a small molecule gamma-secretase inhibitor (GSI) consisting of a tripeptide aldehyde, N-benzyloxycarbonyl-Leu-Leu-Nle-CHO, which can block processing and activation of all four different Notch receptors, we identified a specific apoptotic vulnerability in melanoma cells. GSI triggers apoptosis in melanoma cells, but only G2/M growth arrest in melanocytes without subsequent cell death. Moreover, GSI treatment induced a pro-apoptotic BH3-only protein, NOXA, in melanoma cells but not in normal melanocytes. The use of GSI to induce NOXA induction overcomes the apoptotic resistance of melanoma cells, which commonly express numerous cell survival proteins such as Mcl-1, Bcl-2, and survivin. Taken together, these results highlight the concept of synthetic lethality in which exposure to GSI, in combination with melanoma cells overexpressing activated Notch receptors, has lethal consequences, producing selective killing of melanoma cells, while sparing normal melanocytes. By identifying signaling pathways that contribute to the transformation of melanoma cells (e.g. Notch signaling), and anti-cancer agents that achieve tumor selectivity (e.g., GSI-induced NOXA), this experimental approach provides a useful framework for future therapeutic strategies in cutaneous oncology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of adherent monolayer cultures have produced many insights into melanoma cell growth and differentiation, but often novel therapeutics demonstrated to act on these cells are not active in vivo. It is imperative that new methods of growing melanoma cells that reflect growth in vivo are investigated. To this end, a range of human melanoma cell lines passaged as adherent cultures or induced to form melanoma spheres (melanospheres) in stem cell media have been studied to compare cellular characteristics and protein expression. Melanoma spheres and tumours grown from cell lines as mouse xenografts had increased heterogeneity when compared with adherent cells and 3D-spheroids in agar (aggregates). Furthermore, cells within the melanoma spheres and mouse xenografts each displayed a high level of reciprocal BRN2 or MITF expression, which matched more closely the pattern seen in human melanoma tumours in situ, rather than the propensity for co-expression of these important melanocytic transcription factors seen in adherent cells and 3D-spheroids. Notably, when the levels of the BRN2 and MITF proteins were each independently repressed using siRNA treatment of adherent melanoma cells, members of the NOTCH pathway responded by decreasing or increasing expression, respectively. This links BRN2 as an activator, and conversely, MITF as a repressor of the NOTCH pathway in melanoma cells. Loss of the BRN2-MITF axis in antisense-ablated cell lines decreased the melanoma sphere-forming capability, cell adhesion during 3D-spheroid formation and invasion through a collagen matrix. Combined, this evidence suggests that the melanoma sphere-culture system induces subpopulations of cells that may more accurately portray the in vivo disease, than the growth as adherent melanoma cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fibroblasts and their activated phenotype, myofibroblasts, are the primary cell types involved in the contraction associated with dermal wound healing. Recent experimental evidence indicates that the transformation from fibroblasts to myofibroblasts involves two distinct processes: the cells are stimulated to change phenotype by the combined actions of transforming growth factor β (TGFβ) and mechanical tension. This observation indicates a need for a detailed exploration of the effect of the strong interactions between the mechanical changes and growth factors in dermal wound healing. We review the experimental findings in detail and develop a model of dermal wound healing that incorporates these phenomena. Our model includes the interactions between TGFβ and collagenase, providing a more biologically realistic form for the growth factor kinetics than those included in previous mechanochemical descriptions. A comparison is made between the model predictions and experimental data on human dermal wound healing and all the essential features are well matched.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hypertrophic scars arise when there is an overproduction of collagen during wound healing. These are often associated with poor regulation of the rate of programmed cell death(apoptosis) of the cells synthesizing the collagen or by an exuberant inflammatory response that prolongs collagen production and increases wound contraction. Severe contractures that occur, for example, after a deep burn can cause loss of function especially if the wound is over a joint such as the elbow or knee. Recently, we have developed a morphoelastic mathematical model for dermal repair that incorporates the chemical, cellular and mechanical aspects of dermal wound healing. Using this model, we examine pathological scarring in dermal repair by first assuming a smaller than usual apoptotic rate for myofibroblasts, and then considering a prolonged inflammatory response, in an attempt to determine a possible optimal intervention strategy to promote normal repair, or terminate the fibrotic scarring response. Our model predicts that in both cases it is best to apply the intervention strategy early in the wound healing response. Further, the earlier an intervention is made, the less aggressive the intervention required. Finally, if intervention is conducted at a late time during healing, a significant intervention is required; however, there is a threshold concentration of the drug or therapy applied, above which minimal further improvement to wound repair is obtained.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Presently, global rates of skin cancers induced by ultraviolet radiation (UVR) exposure are on the rise. In view of this, current knowledge gaps in the biology of photocarcinogenesis and skin cancer progression urgently need to be addressed. One factor that has limited skin cancer research has been the need for a reproducible and physiologically-relevant model able to represent the complexity of human skin. This review outlines the main currently-used in vitro models of UVR-induced skin damage. This includes the use of conventional two-dimensional cell culture techniques and the major animal models that have been employed in photobiology and photocarcinogenesis research. Additionally, the progression towards the use of cultured skin explants and tissue-engineered skin constructs, and their utility as models of native skin's responses to UVR are described. The inherent advantages and disadvantages of these in vitro systems are also discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Men aged 50 years or older are at high risk of melanoma, and both incidence and mortality are increasing in this group1. Skin self-examination (SSE) could be one avenue to improve outcomes from melanoma. Several recent intervention trials successfully increased SSE, but resistance to such interventions is less well studied. This posthoc secondary analysis of interventional study data aimed to identify characteristics of older men who did not take up SSE for the early signs of skin cancer, despite exposure to educational materials during a randomized intervention trial

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVES: To measure the thickness at which primary schoolchildren apply sunscreen on school day mornings and to compare it with the thickness (2.00 mg/cm(2)) at which sunscreen is tested during product development, as well as to investigate how application thickness was influenced by age of the child (school grades 1-7) and by dispenser type (500-mL pump, 125-mL squeeze bottle, or 50-mL roll-on). DESIGN: A crossover quasiexperimental study design comparing 3 sunscreen dispenser types. SETTING: Children aged 5 to 12 years from public primary schools (grades 1-7) in Queensland, Australia. PARTICIPANTS: Children (n=87) and their parents randomly recruited from the enrollment lists of 7 primary schools. Each child provided up to 3 observations (n=258). INTERVENTION: Children applied sunscreen during 3 consecutive school weeks (Monday through Friday) for the first application of the day using a different dispenser each week. MAIN OUTCOME MEASURE: Thickness of sunscreen application (in milligrams per square centimeter). The dispensers were weighed before and after use to calculate the weight of sunscreen applied. This was divided by the coverage area of application (in square centimeters), which was calculated by multiplying the children's body surface area by the percentage of the body covered with sunscreen. RESULTS: Children applied their sunscreen at a median thickness of 0.48 mg/cm(2). Children applied significantly more sunscreen when using the pump (0.75 mg/cm(2)) and the squeeze bottle (0.57 mg/cm(2)) compared with the roll-on (0.22 mg/cm(2)) (P<.001 for both). CONCLUSIONS: Regardless of age, primary schoolchildren apply sunscreen at substantially less than 1.00 mg/cm(2), similar to what has been observed among adults. Some sunscreen dispensers seem to facilitate thicker application than others.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Epidermogenesis and epidermal wound healing are tightly regulated processes during which keratinocytes must migrate, proliferate and differentiate. Cell to cell adhesion is crucial to the initiation and regulation of these processes. CUB domain containing protein 1 (CDCP1) is a transmembrane glycoprotein that is differentially tyrosine phosphorylated during changes in cell adhesion and survival signalling and is expressed by keratinocytes in native human skin, as well as in primary cultures. Objectives: To investigate the expression of CDCP1 during epidermogenesis and its role in keratinocyte migration. Methods: We examined both human skin tissue and an in vitro three-dimensional human skin equivalent model to examine the expression of CDCP1 during epidermogenesis. To examine the role of CDCP1 in keratinocyte migration we used a function blocking anti-CDCP1 antibody and a real-time Transwell™ cell migration assay. Results: Immunohistochemical analysis indicated that in native human skin CDCP1 is expressed in the stratum basale and stratum spinosum. In contrast, during epidermogenesis in a 3-dimensional human skin equivalent model CDCP1 was expressed only in the stratum basale, with localization restricted to the cell-cell membrane. No expression was detected in basal keratinocytes that were in contact with the basement membrane. Further, an anti-CDCP1 function blocking antibody was shown to disrupt keratinocyte chemotactic migration in vitro. Conclusions: These findings delineate the expression of CDCP1 in human epidermal keratinocytes during epidermogenesis and demonstrate that CDCP1 is involved in keratinocyte migration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Macrophages are the main components of inflammation during skin wound healing. They are critical in wound closure and in excessive inflammation, resulting in defective healing observed in chronic wounds. Given the heterogeneity of macrophage phenotypes and functions, we here hypothesized that different subpopulations of macrophages would have different and sometimes opposing effects on wound healing. Using multimarker flow cytometry and RNA expression array analyses on macrophage subpopulations from wound granulation tissue, we identified a Ly6cloMHCIIhi “noninflammatory” subset that increased both in absolute number and proportion during normal wound healing and was missing in Ob/Ob and MYD88−/− models of delayed healing. We also identified IL17 as the main cytokine distinguishing this population from proinflammatory macrophages and demonstrated that inhibition of IL17 by blocking Ab or in IL17A−/− mice accelerated normal and delayed healing. These findings dissect the complexity of the role and activity of the macrophages during wound inflammation and may contribute to the development of therapeutic approaches to restore healing in chronic wounds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Separately, actinic keratosis (AK) and cutaneous squamous cell carcinoma (SCC) have been associated with cutaneous human papillomavirus (HPV) infections. To further explore the association between HPV infection and SCC development, we determined markers of cutaneous HPV infection within a single population in persons with precursor lesions (AK), cancerous lesions (SCC), and without. Serum and plucked eyebrow hairs were collected from 57 tumor-free controls, 126 AK, and 64 SCC cases. Presence of HPV L1 and E6 seroreactivity and viral DNA were determined for HPV types 5, 8, 15, 16, 20, 24, and 38. Significant positive associations with increasing severity of the lesions (controls, AK, and SCC, respectively) were observed for overall HPV L1 seropositivity (13%, 26%, and 37%) and for HPV8 (4%, 17%, and 30%). In parallel, the proportion of L1 seropositive individuals against multiple HPV types increased from 14% to 39% and 45%. The overall E6 seroreactivity, however, tended to decline with AK and SCC, especially for HPV8 (21%, 11%, and 2%). HPV DNA positivity was most prevalent in the AK cases (54%) compared with the SCC cases (44%) and the tumor-free controls (40%). Among all participants, there was a positive trend between overall HPV DNA positivity and L1 seropositivity, but not E6 seropositivity. Taken together, our data suggest that cutaneous HPV infections accompanied by detectable HPV DNA in eyebrow hairs and HPV L1 seropositivity, but not E6 seropositivity, are associated with an increased risk of AK and SCC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Human papillomaviruses (HPVs) cause cervical cancer and some other types of epithelial cancers. HPV types from the phylogenic beta genus (beta-PVs), formerly known as epidermodysplasia verruciformis–associated HPV types, are frequently detected in nonmelanoma skin cancers, especially in squamous cell carcinomas (SCCs). An etiologic relationship with beta-PV infection is suspected...

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vitamin D may have anti-skin cancer effects, but population-based evidence is lacking. We therefore assessed associations between vitamin D status and skin cancer risk in an Australian subtropical community. We analyzed prospective skin cancer incidence for 11 years following baseline assessment of serum 25(OH)-vitamin D in 1,191 adults (average age 54 years) and used multivariable logistic regression analysis to adjust risk estimates for age, sex, detailed assessments of usual time spent outdoors, phenotypic characteristics, and other possible confounders. Participants with serum 25(OH)-vitamin D concentrations above 75 nmol  l(-1) versus those below 75 nmol  l(-1) more often developed basal cell carcinoma (odds ratio (OR)=1.51 (95% confidence interval (CI): 1.10-2.07, P=0.01) and melanoma (OR=2.71 (95% CI: 0.98-7.48, P=0.05)). Squamous cell carcinoma incidence tended to be lower in persons with serum 25(OH)-vitamin D concentrations above 75 nmol  l(-1) compared with those below 75 nmol  l(-1) (OR=0.67 (95% CI: 0.44-1.03, P=0.07)). Vitamin D status was not associated with skin cancer incidence when participants were classified as above or below 50 nmol  l(-1) 25(OH)-vitamin D. Our findings do not indicate that the carcinogenicity of high sun exposure can be counteracted by high vitamin D status. High sun exposure is to be avoided as a means to achieve high vitamin D status.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Advances in mobile telephone technology and available dermoscopic attachments for mobile telephones have created a unique opportunity for consumer-initiated mobile teledermoscopy. At least 2 companies market a dermoscope attachment for an iPhone (Apple), forming a mobile teledermoscope. These devices and the corresponding software applications (apps) enable (1) lesion magnification (at least ×20) and visualization with polarized light; (2) photographic documentation using the telephone camera; (3) lesion measurement (ruler); (4) adding of image and lesion details; and (5) e-mail data to a teledermatologist for review. For lesion assessment, the asymmetry-color (AC) rule has 94% sensitivity and 62 specificity for melanoma identification by consumers [1]. Thus, consumers can be educated to recognize asymmetry and color patterns in suspect lesions. However, we know little about consumers' use of mobile teledermoscopy for lesion assessment.