125 resultados para Corynebacterium diphtheriae


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Eighteen Corynebacterium xerosis strains isolated from different animal clinical specimens were subjected to phenotypic and molecular genetic studies. On the basis of the results of the biochemical characterization, the strains were tentatively identified as C. xerosis. Phylogenetic analysis based on comparative analysis of the sequences of 16S rRNA and rpoB genes revealed that the 18 strains were highly related to C. xerosis, C. amycolatum, C. freneyi, and C. hansenii. There was a good concordance between 16S rRNA and partial rpoB gene sequencing results, although partial rpoB gene sequencing allowed better differentiation of C. xerosis. Alternatively, C. xerosis was also differentiated from C. freneyi and C. amycolatum by restriction fragment length polymorphism analysis of the 16S-23S rRNA gene intergenic spacer region. Phenotypic characterization indicated that besides acid production from D-turanose and 5-ketogluconate, 90% of the strains were able to reduce nitrate. The absence of the fatty acids C(14:0), C(15:0), C(16:1)omega 7c, and C(17:1)omega 8c can also facilitate the differentiation of C. xerosis from closely related species. The results of the present investigation demonstrated that for reliable identification of C. xerosis strains from clinical samples, a combination of phenotypic and molecular-biology-based identification techniques is necessary.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lignocellulosic materials, such as sugar cane bagasse, a waste product of the sugarcane processing industry, agricultural residues and herbaceous crops, may serve as an abundant and comparatively cheap feedstock for largescale industrial fermentation, resulting in the production of marketable end-products. However, the complex structure of lignocellulosic materials, the presence of various hexose and pentose sugars in the hemicellulose component, and the presence of various compounds that inhibit the organisms selected for the fermentation process, all constitute barriers that add to the production costs and make full scale industrial production economically less feasible. The work presented in this thesis was conducted in order to screen microorganisms for ability to utilize pentose sugars derived from the sugar mill industrial waste. A large number of individual bacterial strains were investigated from hemi-cellulose rich material collected at the Proserpine and Maryborough sugar mills, notably soil samples from the mill sites. The research conducted to isolation of six pentose-capable Gram-positive organisms from the actinomycetes group by using pentose as a sole carbon source in the cultivation process. The isolates were identified as Corynebacterium glutamicum, Actinomyces odontolyticus, Nocardia elegans, and Propionibacterium freudenreichii all of which were isolated from the hemicellulose-enriched soil. Pentose degrading microbes are very rare in the environment, so this was a significant discovery. Previous research indicated that microbes could degrade pentose after genetic modification but the microbes discovered in this research were able to naturally utilize pentose. Six isolates, identified as four different genera, were investigated for their ability to utilize single sugars as substrates (glucose, xylose, arabinose or ribose), and also dual sugars as substrates (a hexose plus a pentose). The results demonstrated that C. glutamicum, A. odontolyticus, N. elegans, and P. freudenreichii were pentose-capable (able to grow using xylose or other pentose sugar), and also showed diauxie growth characteristics during the dual-sugar (glucose, in combination with xylose, arabinose or ribose) carbon source tests. In addition, it was shown that the isolates displayed very small differences in growth rates when grown on dual sugars as compared to single sugars, whether pentose or hexose in nature. The anabolic characteristics of C. glutamicum, A. odontolyticus, N. elegans and P. freudenreichii were subsequently investigated by qualitative analysis of their end-products, using high performance liquid chromatography (HPLC). All of the organisms produced arginine and cysteine after utilization of the pentose substrates alone. In addition, P. freudenreichii produced alanine and glycine. The end-product profile arising from culture with dual carbon sources was also tested. Interestingly, this time the product was different. All of them produced the amino acid glycine, when grown on a combination substrate-mix of glucose with xylose, and also glucose with arabinose. Only N. elegans was able to break down ribose, either singly or in combination with glucose, and the end-product of metabolism of the glucose plus ribose substrate combination was glutamic acid. The ecological analysis of microbial abundance in sugar mill waste was performed using denaturing gradient gel electrophoresis (DGGE) and also the metagenomic microarray PhyloChip method. Eleven solid samples and seven liquid samples were investigated. A very complex bacterial ecosystem was demonstrated in the seven liquid samples after testing with the PhyloChip method. It was also shown that bagasse leachate was the most different, compared to all of the other samples, by virtue of its richness in variety of taxa and the complexity of its bacterial community. The bacterial community in solid samples from Proserpine, Mackay and Maryborough sugar mills showed huge diversity. The information found from 16S rDNA sequencing results was that the bacterial genera Brevibacillus, Rhodospirillaceae, Bacillus, Vibrio and Pseudomonas were present in greatest abundance. In addition, Corynebacterium was also found in the soil samples. The metagenomic studies of the sugar mill samples demonstrate two important outcomes: firstly that the bagasse leachate, as potentially the most pentose-rich sample tested, had the most complex and diverse bacterial community; and secondly that the pentose-capable isolates that were initially discovered at the beginning of this study, were not amongst the most abundant taxonomic groups discovered in the sugar mill samples, and in fact were, as suspected, very rare. As a bioprospecting exercise, therefore, the study has discovered organisms that are naturally present, but in very small numbers, in the appropriate natural environment. This has implications for the industrial application of E-PUB, in that a seeding process using a starter culture will be necessary for industrial purposes, rather than simply assuming that natural fermentation might occur.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The catalytic action of putrescine specific amine oxidases acting in tandem with 4-aminobutyraldehyde dehydrogenase is explored as a degradative pathway in Rhodococcus opacus. By limiting the nitrogen source, increased catalytic activity was induced leading to a coordinated response in the oxidative deamination of putrescine to 4-aminobutyraldehyde and subsequent dehydrogenation to 4-aminobutyrate. Isolating the dehydrogenase by ion exchange chromatography and gel filtration revealed that the enzyme acts principally on linear aliphatic aldehydes possessing an amino moiety. Michaelis-Menten kinetic analysis delivered a Michaelis constant (KM=0.014mM) and maximum rate (Vmax=11.2μmol/min/mg) for the conversion of 4-aminobutyraldehyde to 4-aminobutyrate. The dehydrogenase identified by MALDI-TOF mass spectrometric analysis (E value=0.031, 23% coverage) belongs to a functionally related genomic cluster that includes the amine oxidase, suggesting their association in a directed cell response. Key regulatory, stress and transport encoding genes have been identified, along with candidate dehydrogenases and transaminases for the further conversion of 4-aminobutyrate to succinate. Genomic analysis has revealed highly similar metabolic gene clustering among members of Actinobacteria, providing insight into putrescine degradation notably among Micrococcaceae, Rhodococci and Corynebacterium by a pathway that was previously uncharacterised in bacteria.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract Microbial transformation of N, N-dimethyl-p-phenylene diamine (DMPDA), a microbial product formed from the fungicide fenaminosulf (p-dimethylaminobenzenediazo sodium sulfonate) was studied by enriching microbes in soils treated with the amine. Microorganisms isolated from DMPDA-treated soil belonged to the genera of Micrococcus, Alcaligenes, and Corynebacterium. Of the various isolates, Alcaligenes DM4 showed maximal growth on DMPDA utilizing it as sources of carbon and nitrogen. When grown in mineral salts basal medium containing 0.05% DMPDA to serve as carbon and nitrogen sources, Alcaligenes DM4 grew exponentially up to 18 h. Even though the characterization of the complete pathway of microbial degradation of DMPDA could not be carried out due to the auto-oxidation of the compound, the initial transformation product of DMPDA by Alcaligenes DM4 has been identified as a dimer. The dimer is generated into the culture medium presumably by the extra-cellular oxidase of Alcaligenes DM4. It is suggested that the risk-benefit evaluation on the use of fenaminosulf is to be made taking into consideration the microbial transformations of the fungicide.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

My work describes two sectors of the human bacterial environment: 1. The sources of exposure to infectious non-tuberculous mycobacteria. 2. Bacteria in dust, reflecting the airborne bacterial exposure in environments protecting from or predisposing to allergic disorders. Non-tuberculous mycobacteria (NTM) transmit to humans and animals from the environment. Infection by NTM in Finland has increased during the past decade beyond that by Mycobacterium tuberculosis. Among the farm animals, porcine mycobacteriosis is the predominant NTM disease in Finland. Symptoms of mycobacteriosis are found in 0.34 % of slaughtered pigs. Soil and drinking water are suspected as sources for humans and bedding materials for pigs. To achieve quantitative data on the sources of human and porcine NTM exposure, methods for quantitation of environmental NTM are needed. We developed a quantitative real-time PCR method, utilizing primers targeted at the 16S rRNA gene of the genus of Mycobacterium. With this method, I found in Finnish sphagnum peat, sandy soils and mud high contents of mycobacterial DNA, 106 to 107 genome equivalents per gram. A similar result was obtained by a method based on the Mycobacterium-specific hybridization of 16S rRNA. Since rRNA is found mainly in live cells, this result shows that the DNA detected by qPCR mainly represented live mycobacteria. Next, I investigated the occurrence of environmental mycobacteria in the bedding materials obtained from 5 pig farms with high prevalence (>4 %) of mycobacteriosis. When I used for quantification the same qPCR methods as for the soils, I found that piggery samples contained non-mycobacterial DNA that was amplified in spite of several mismatches with the primers. I therefore improved the qPCR assay by designing Mycobacterium-specific detection probes. Using the probe qPCR assay, I found 105 to 107 genome equivalents of mycobacterial DNA in unused bedding materials and up to 1000 fold more in the bedding collected after use in the piggery. This result shows that there was a source of mycobacteria in the bedding materials purchased by the piggery and that mycobacteria increased in the bedding materials during use in the piggery. Allergic diseases have reached epidemic proportions in urbanized countries. At the same time, childhood in rural environment or simple living conditions appears to protect against allergic disorders. Exposure to immunoreactive microbial components in rural environments seems to prevent allergies. I searched for differences in the bacterial communities of two indoor dusts, an urban house dust shown to possess immunoreactivity of the TH2-type and a farm barn dust with TH1-activity. The immunoreactivities of the dusts were revealed by my collaborators, in vitro in human dendritic cells and in vivo in mouse. The dusts accumulated >10 years in the respiratory zone (>1.5 m above floor), thus reflecting the long-term content of airborne bacteria at the two sites. I investigated these dusts by cloning and sequencing of bacterial 16S rRNA genes from dust contained DNA. From the TH2-active urban house dust, I isolated 139 16S rRNA gene clones. The most prevalent genera among the clones were Corynebacterium (5 species, 34 clones), Streptococcus (8 species, 33 clones), Staphylococcus (5 species, 9 clones) and Finegoldia (1 species, 9 clones). Almost all of these species are known as colonizers of the human skin and oral cavity. Species of Corynebacterium and Streptococcus have been reported to contain anti-inflammatory lipoarabinomannans and immunmoreactive beta-glucans respectively. Streptococcus mitis, found in the urban house dust is known as an inducer of TH2 polarized immunity, characteristic of allergic disorders. I isolated 152 DNA clones from the TH1-active farm barn dust and found species quite different from those found from the urban house dust. Among others, I found DNA clones representing Bacillus licheniformis, Acinetobacter lwoffii and Lactobacillus each of which was recently reported to possess anti-allergy immunoreactivity. Moreover, the farm barn dust contained dramatically higher bacterial diversity than the urban house dust. Exposure to this dust thus stimulated the human dendritic cells by multiple microbial components. Such stimulation was reported to promote TH1 immunity. The biodiversity in dust may thus be connected to its immunoreactivity. Furthermore, the bacterial biomass in the farm barn dust consisted of live intact bacteria mainly. In the urban house dust only ~1 % of the biomass appeared as intact bacteria, as judged by microscoping. Fragmented microbes may possess bioactivity different from that of intact cells. This was recently shown for moulds. If this is also valid for bacteria, the different immunoreactivities of the two dusts may be explained by the intactness of dustborne bacteria. Based on these results, we offer three factors potentially contributing to the polarized immunoreactivities of the two dusts: (i) the species-composition, (ii) the biodiversity and (iii) the intactness of the dustborne bacterial biomass. The risk of childhood atopic diseases is 4-fold lower in the Russian compared with the Finnish Karelia. This difference across the country border is not explainable by different geo-climatic factors or genetic susceptibilities of the two populations. Instead, the explanation must be lifestyle-related. It has already been reported that the microbiological quality of drinking water differs on the two sides of the borders. In collaboration with allergists, I investigated dusts collected from homes in the Russian Karelia and in the Finnish Karelia. I found that bacterial 16S rRNA genes cloned from the Russian Karelian dusts (10 homes, 234 clones) predominantly represented Gram-positive taxa (the phyla Actinobacteria and Firmicutes, 67%). The Russian Karelian dusts contained nine-fold more of muramic acid (60 to 70 ng mg-1) than the Finnish Karelian dusts (3 to 11 ng mg-1). Among the DNA clones isolated from the Finnish side (n=231), Gram-negative taxa (40%) outnumbered the Gram-positives (34%). Out of the 465 DNA clones isolated from the Karelian dusts, 242 were assigned to cultured validly described bacterial species. In Russian Karelia, animal-associated species e.g. Staphylococcus and Macrococcus were numerous (27 clones, 14 unique species). This finding may connect to the difference in the prevalence of allergy, as childhood contacts with pets and farm animals have been connected with low allergy risk. Plant-associated bacteria and plant-borne 16S rRNA genes (chloroplast) were frequent among the DNA clones isolated from the Finnish Karelia, indicating components originating from plants. In conclusion, my work revealed three major differences between the bacterial communtites in the Russian and in the Finnish Karelian homes: (i) the high prevalence of Gram-positive bacteria on the Russian side and of Gram-negative bacteria on the Finnish side and (ii) the rich presence of animal-associated bacteria on the Russian side whereas (iii) plant-associated bacteria prevailed on the Finnish side. One or several of these factors may connect to the differences in the prevalence of allergy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Discovering new drugs to treat tuberculosis more efficiently and to overcome multidrug resistance is a world health priority. To find novel antitubercular agents several approaches have been used in various institutions worldwide, including target-based approaches against several validated mycobacterial enzymes and phenotypic screens. We screened more than 17,000 compounds from Vichem's Nested Chemical Library(TM) using an integrated strategy involving whole cell-based assays with Corynebacterium glutamicum and Mycobacterium tuberculosis, and target-based assays with protein kinases PknA, PknB and PknG as well as other targets such as PimA and bacterial topoisomerases simultaneously. With the help of the target-based approach we have found very potent hits inhibiting the selected target enzymes, but good minimal inhibitory concentrations (MIC) against M. tuberculosis were not achieved. Focussing on the whole cell-based approach several potent hits were found which displayed minimal inhibitory concentrations (MIC) against M. tuberculosis below 10 mu M and were non-mutagenic, non-cytotoxic and the targets of some of the hits were also identified. The most active hits represented various scaffolds. Medicinal chemistry-based lead optimization was performed applying various strategies and, as a consequence, a series of novel potent compounds were synthesized. These efforts resulted in some effective potential antitubercular lead compounds which were confirmed in phenotypic assays. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sphingolipids are major constituents of biological membranes of eukaryotic cells. Many studies have shown that sphingomyelin (SM) is a major phospholipid in cell bilayers and is mainly localized to the plasma membrane of cells, where it serves both as a building block for cell architecture and as a precursor of bioactive sphingolipids. In particular, upregulation of (C-type) sphingomyelinases will produce ceramide, which regulates many physiological functions including apoptosis, senescence, or cell differentiation. Interestingly, the venom of some arthropodes including spiders of the genus Loxosceles, or the toxins of some bacteria such as Corynebacterium tuberculosis, or Vibrio damsela possess high levels of D-type sphingomyelinase (SMase D). This enzyme catalyzes the hydrolysis of SM to yield ceramide 1-phosphate (C1P), which promotes cell growth and survival and is a potent pro-inflammatory agent in different cell types. In particular, C1P stimulates cytosolic phospholipase A2 leading to arachidonic acid release and the subsequent formation of eicosanoids, actions that are all associated to the promotion of inflammation. In addition, C1P potently stimulates macrophage migration, which has also been associated to inflammatory responses. Interestingly, this action required the interaction of C1P with a specific plasma membrane receptor, whereas accumulation of intracellular C1P failed to stimulate chemotaxis. The C1P receptor is coupled to Gi proteins and activates of the PI3K/Akt and MEK/ERK1-2 pathways upon ligation with C1P. The proposed review will address novel aspects on the control of inflammatory responses by C1P and will highlight the molecular mechanisms whereby C1P exerts these actions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Os bastonetes Gram positivos irregulares (BGPIs) compõem um grupo de espécies bacterianas com ampla diversidade fenotípica e que podem estar presente no meio ambiente, na microbiota humana e de animais. A identificação acurada de BGPIs em nível de gênero e espécie empregando métodos bioquímicos convencionais é bastante limitada, sendo recomendado, portanto, o uso de técnicas moleculares. No presente estudo, foram identificadas amostras de BGPIs oriundas de espécimes clínicos de humanos, de produtos farmacêuticos e de áreas limpas através da análise de sequencias do gene 16S rRNA e de outros genes conservados (housekeeping genes). Os resultados obtidos pelo sequenciamento dos genes 16S rRNA e rpoB demonstraram C. striatum multi-resistente (MDR) como responsável por surto epidêmico em ambiente hospitalar da cidade do Rio de Janeiro. Quinze cepas de C. striatum foram isoladas em cultura pura a partir de secreção traqueal de pacientes adultos submetidos a procedimentos de entubação endotraqueal. A análise por eletroforese em gel de campo pulsado (PFGE) indicou a presença de quatro perfis moleculares, incluindo dois clones relacionados com cepas MDR (PFGE I e II). Os dados demonstram a predominância de PFGE I entre cepas MDR isoladas de unidades de terapia intensiva e enfermarias cirúrgicas. Uma potencial ligação causal entre a morte e a infecção por C. striatum MDR (PFGE tipos I e II) foi observada em cinco casos. Adicionalmente, acreditamos que este seja o primeiro estudo de identificação de espécies de Nocardia relacionadas com infecções humanas pela análise da sequencia multilocus (MLSA) no Brasil. Diferente dos dados observados na literatura (1970 a 2013) e obtidos pelos testes fenotípicos convencionais, a caracterização molecular de quatro lócus (gyrB-16S-secA1-hsp65) permitiu a identificação das espécies N. nova, N. cyriacigeorgica, N. asiatica e N. exalbida/gamkensis relacionadas com quadros de nocardiose em humanos. Cepas de N. nova isoladas de diferentes materiais clínicos de um único paciente apresentaram padrões de susceptibilidade antimicrobianos idênticos e dois perfis PFGE, indicando a possibilidade de quadros de co-infecção por N. nova em humanos. Em outra etapa da investigação, amostras de BGPIs obtidos de ambientes de salas limpas que não puderam ser identificadas por critérios convencionais foram submetidas a análise da sequência do gene 16S rRNA e caracterizadas 95,83% em nível de gênero e 35,42% em espécies. Para gêneros mais encontrados no estudo, foram analisados os genes rpoB e recA de dezessete cepas de Microbacterium e utilizado o MLSA para a identificação de sete cepas identificadas como Streptomyces. Os ensaios permitiram a identificação de três cepas de Microbacterium e de uma única amostra de Streptomyces ao nível de espécie. A análise da sequencia do gene rpoB também se mostrou eficaz na identificação de espécies de cepas de Corynebacterium. Finalmente, para as cepas ambientais pertencentes à classe Actinobacteria os dados morfológicos, bioquímicos e genotípicos permitiram documentar a cepa 3117BRRJ como representante de uma nova espécie do gênero Nocardioides, para o qual o nome Nocardioides brasiliensis sp. nov. e as cepas 3712BRRJ e 3371BRRJ como representante de um novo gênero e espécie para o qual o nome Guaraldella brasiliensis nov. foi proposto.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Estudo descritivo retrospectivo realizado no Instituto Nacional do Câncer José Alencar Gomes da Silva, INCA/HCI-Rio de Janeiro, Brasil, (INCA- HCI-RJ), avaliou infecções por Corynebacterium sp. com ênfase nos pacientes pediátricos em tratamento nos setores onco-hematológico pediátrico e seus acessos venosos. Os resultados permitiram a elaboração de dois artigos. No Artigo 1 - Foram analisadas as bacteremias causadas por espécies de corinebactérias não produtoras de toxina diftérica, observadas em dois períodos, com intervalo de sete anos (2003/2004 e 2012/2013), totalizando 62 pacientes. No Artigo 2 - Foi realizada investigação clínica e epidemiológica de 24 casos de infecção por Corynebacterium sp. em amostras de sangue de cateter e/ou periférica, em menores de 18 anos em tratamento onco-hematopediátrico, em dois períodos, com intervalo de oito anos (2003/2004 e 2013/2014). Nos dois artigos foram avaliados aspectos clínico-epidemiológicos, tratamentos realizados, conduta em cada paciente e avaliação da susceptibilidade aos antimicrobianos das cepas isoladas. Os tumores sólidos tiveram maior prevalência em ambas análises. No primeiro artigo, as infecções por corinebactérias tiveram relação com os pacientes usuários de cateter venoso central. Após estes primeiros resultados, foi desenhado um segundo estudo retrospectivo com abordagem em pacientes pediátricos em tratamento. Cerca de 83,3% destes pacientes eram portadores de cateter venoso central de longa permanência (CVCLP). A análise microbiológica permitiu a observação da incidência de novas espécies de corinebactérias, algumas multirresistentes, além da evolução dos padrões de susceptibilidade aos antimicrobianos, com aumento da resistência a alguns dos agentes utilizados na rotina de tratamento para infecções por este grupo. Em ambos estudos C. amycolatum foi a espécie predominante. Apesar de terem sido identificadas cepas multirresistentes, todas as cepas isoladas apresentaram susceptibilidade a vancomicina (artigos 1 e 2). O uso de vancomicina permitiu preservação dos dispositivos venosos com estabilização do quadro clínico, na maioria dos casos. Na avaliação retrospectiva do segundo estudo proposto 40% dos CVCLP foram preservados, a análise comparativa dos períodos estudados revelou uma evolução na preservação de dispositivos venosos mediante o tratamento antimicrobiano orientado nos casos de infecção por Corynebacterium. A integração da equipe multidisciplinar, desde a identificação dos casos clínicos, manuseio das amostras, identificação laboratorial e os resultados, bem como na proposta de tratamento promoveu uma melhoria significativa na assistência aos pacientes e contribuiu para o sucesso terapêutico observado neste trabalho. O reconhecimento das corinebactérias como importantes agentes associados a infecções em pacientes oncológicos pediátricos pelos profissionais de saúde contribuiu para a elaboração de estratégias específicas e, conseqüentemente, para melhorias nas condutas e protocolos, bem como na terapêutica aplicada às infecções por estes agentes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The sensitivity of 61 cultures of bacteria isolated from fish towards chlortetracycline (CTC) at 5 ppm and 20 ppm levels has been determined on two solid media: sea water agar (SWA) and a distilled water based medium consisting of peptone, beef extract, glucose and NaCI (PBGA). The cultures employed consisted of (i) gram-negative rods of marine origin (Achromobacter, Pseudomonas, Vibrio and Flavobacterium) and (ii) gram positive organisms (Micrococci and Corynebacterium). Depending on the inhibition zone diameter, the order of CTC sensitivity was found to be Pseudomonas