871 resultados para Celiac Disease -- pathology


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background - Several studies have shown that celiac disease, an autoimmune disorder that occurs in genetically susceptible individuals, is highly prevalent among relatives of celiac patients. Aim - To determine the prevalence of celiac disease in a group of first degree relatives of Brazilian celiac patients. Methods - First degree relatives of celiac patients attending the Brasilia University Hospital Pediatric Gastroenterology Outpatient Clinic or the Celiac Disease Investigation Center, Brasília, DF, Brazil, between March 2001 and November 2004 were invited to undergo serological screening for celiac disease applying the IgA anti-endomysium antibody test (IgA-EMA). All positive IgA-EMA sera underwent a second screening using the IgA anti-tissue transglutaminase antibodies test. Duodenal or small intestinal biopsies were performed in all subjects positive to serological testing. Biopsy samples were classified as type (O) normal, (I) infiltrative, (II) infiltrative hyperplastic, (III) flat destructive, and (IV) atrophic hypoplastic. The final diagnosis was ascertained in subjects showing positive serological tests and a grade I to III small intestinal lesion. Results - Nine new cases of celiac disease were found among the 188 first degree relatives tested (4.8%). Conclusion - The present study confirms the high prevalence of celiac disease among first degree celiac patients’ relatives and reinforces the need of extensive diagnostic screening in this specific group.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: Idiopathic Pulmonary Hemosiderosis (IPH) is a rare cause of alveolar hemorrhage, which is seen primarily in childhood. Celiac disease is defined as a chronic, immune-mediated enteropathy of the small intestine, caused by exposure to dietary gluten in genetically pre-disposed individuals. Association of IPH and celiac disease is known as Lane Hamilton syndrome. There are limited number of case reports of this syndrome in literature. Case Presentation: Although there were no growth and developmental delay and gastrointestinal symptoms like chronic diarrhea, chronic constipation, vomiting, abdominal bloating and pain in the two patients with IPH, they were diagnosed with Lane Hamilton Syndrome. After initiation of gluten-free diet, their IPH symptoms disappeared and hemoglobin levels were observed to return to normal. Conclusions: Even if there were no gastrointestinal symptoms in a patient with IPH, celiac disease should be investigated. These patients may benefit from gluten free diet and IPH symptoms may disappear.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Celiac disease is an immune-mediated inflammation of the small intestine caused by sensitivity to dietary gluten in genetically sensitive individuals. Objectives: In this study, we aimed to evaluate the predictive value of tissue transglutaminase (tTG) antibodies for the diagnosis of celiac disease in a pediatric population in order to determine if duodenal biopsy can be avoided. Patients and Methods: The subjects were selected among individuals with probable celiac disease, referring to a gastrointestinal clinic. After physical examinations and performing tissue transglutaminase-immunoglobulin A (tTG-IgA) tests, upper endoscopy was performed if serological titer was higher than 18 IU/mL. Therapy started according to pathologic results. Results: The sample size was calculated to be 121 subjects (69 female and 52 male subjects); the average age of subjects was 8.4 years. A significant association was found between serological titer and pathologic results; in other words, subjects with high serological titer had more positive pathologic results for celiac disease, compared to others (P < 0.001). Maximum sensitivity (65%) and specificity (65.4%) were achieved at a serological titer of 81.95 IU/ml; the calculated accuracy was lower in comparison with other studies. As the results indicated, lower antibody titer was observed in patients with failure to gain weight and higher antibody titer was reported in diabetic patients. Conclusions: As the results indicated, a single serological test (tTg-IgA test) was not sufficient for avoiding intestinal biopsy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Context - It is well recognized that celiac disease is an immune-mediated systemic disorder highly prevalent among relatives of celiac patients. Objectives - The aim of this study is to determine the prevalence of celiac disease in a group of first degree relatives of celiac children, and to access the frequency of human leukocyte antigen HLA-DQ2 and DQ8 in celiac disease patients and their affected relatives. Methods - A survey was conducted of 39 children with celiac disease with follow-up in the Pediatric outpatient’s clinic of Dr. Nélio Mendonça Hospital, in Madeira Island, Portugal. Were invited 110 first degree relatives to undergo serological screen for celiac disease with IgA antibody to human recombinant tissue transglutaminase (IgA-TGG) quantification. In all seropositive relatives, small intestinal biopsy and HLA typing was recommended. Results - HLA- typing was performed in 38 celiac patients, 28/74% DQ2 positive, 1/2% DQ8 positive and 9/24% incomplete DQ2. Positive IgA-TGG was found in five out of the 95 relatives, and CD was diagnosed in three of them. Three relatives had the presence of HLA-DQ2, two were DQ2 incomplete (DQB1*02). Conclusion - The prevalence of celiac disease among first degree celiac patients´ relatives was 3.1%, 4.5 times higher than the general Portuguese population (0,7%) witch reinforces the need of extensive diagnostic screening in this specific group. HLA-DQ2 typing may be a tool in the diagnostic approach.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Mammalian gastrointestinal tract and liver are self-renewing organs that are able to sustain themselves due to stem cells present in their tissues. In constant, inflammation-related epithelial damage, vigorous activation of stem cells may lead to their uncontrolled proliferation, and further, to cancer. GATA-4, GATA-5, and GATA-6 regulate cell proliferation and differentiation in many mammalian organs. Lack of GATA-4 or GATA-6 leads to defective endodermal development and cell differentiation. GATA-4 and GATA-5 are considered the ones with tumor suppressive functions, whereas GATA-6 is more related to tumor promotion. In the digestive system their roles in inflammation and tumor-related molecular pathways remain unclear. In this study, we examined the GATA-related molecular pathways involved in normal tissue organization and renewal and in inflammation-related epithelial repair in the gastrointestinal tract and liver. The overall purpose of this study was to elucidate the relation of GATA factors to gastrointestinal and hepatic disease pathology and to evaluate their possible clinical significance in tumor biology. The results indicated distinct expression patterns for GATA-4, GATA-5, and GATA-6 in the human and murine gastrointestinal tract and liver, and their involvement in the regulation of intestine-specific genes. GATA-5 was confined to the intestines of suckling mice, suggesting an association with postnatal enzymatic changes. GATA-4 was upregulated in bowel inflammation concomitantly with TGF-β signaling. In gastrointestinal tumors, GATA-4 was restricted to benign neoplasias of the stomach, while GATA-6 was detected especially at the invasive edges of malignant tumors throughout the gut. In the liver, GATA-4 was upregulated in pediatric tumors along with erythropoietin (Epo), which was detected also in the sera of tumor patients. Furthermore, GATA-4 was enhanced in areas of vigorous hepatic regeneration in patients with tyrosinemia type I. These results suggest a central role for GATA-4 in pediatric tumor biology of the liver. To conclude, GATA-4, GATA-5, and GATA-6 are associated with normal gastrointestinal and hepatic development and regeneration. The appearance of GATA-4 along with TGF-β-signaling in the inflammatory bowel suggests a protective role in the response to inflammation-related epithelial destruction. However, in extremely malignant pediatric liver tumors, GATA-4 function is unlikely to be tumor-suppressing, probably due to the nature of the very primitive multipotent tumor cells. GATA-4, along with its possible downstream factor Epo, could be utilized as novel hepatic tumor markers to supplement the present diagnostics. They could also serve a function in future biological therapies for aggressive pediatric tumors.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The purpose of the present work was both to analyze composition of Spanish celiac women and to study the food habits and gluten-free diet of these celiac patients, in order to determine whether they achieve a balanced and healthy diet as well as to highlight nutritional qualitative and/or quantitative differences. 54 adult celiac women (34 +/- 13 years) took part in the six-month study. Height, weight and body composition were measured. An analysis of energy consumption and of the macronutrient distribution of their diet was carried out. Their fulfillment of micronutrient intake recommendations was verified. Participants showed a Body Mass Index of 21.6 +/- 2.4 kg/m(2). Energy Intake was slightly lower than the Dietary Reference Intakes. Excessive protein apart from over-consumption of fat was observed. More than three quarters of participants consumed meat in excess. Carbohydrate consumption along with that of fiber was below recommended levels. Vitamin D, iron, and iodine had a low percentage of recommendation compliance. In general, participants followed the recommendations of dairy products and fruit intake whereas vegetable consumption was not enough for the vast majority. We conclude that although the diet of celiac women does not differ much from the diet of general population, some considerations, such as reducing fat and protein consumption and increasing fiber intake, must be taken into account.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Introduction: Juvenile idiopathic arthritis (JIA) is the most common rheumatological disease of childhood with a prevalence of around 1 in 1000. Without appropriate treatment it can have devastating consequences including permanent disability from joint destruction and growth deformities. Disease aetiology remains unknown. Investigation of disease pathology at the level of the synovial membrane is required if we want to begin to understand the disease at the molecular and biochemical level. The synovial membrane proteome from early disease-stage, treatment naive JIA patients was compared between polyarticular and oligoarticular subgroups.

Methods: Protein was extracted from 15 newly diagnosed, treatment naive JIA synovial membrane biopsies and separated by two dimensional fluorescent difference in-gel electrophoresis. Proteins displaying a two-fold or greater change in expression levels between the two subgroups were identified by matrix assisted laser desorption ionization-time of flight mass spectrometry with expression further verified by Western blotting and immunohistochemistry.

Results: Analysis of variance analysis (P <= 0.05) revealed 25 protein spots with a two-fold or greater difference in expression levels between polyarticular and oligoarticular patients. Hierarchical cluster analysis with Pearson ranked correlation revealed two distinctive clusters of proteins. Some of the proteins that were differentially expressed included: integrin alpha 2b (P = 0.04); fibrinogen D fragment (P =0.005); collagen type VI (P = 0.03); fibrinogen gamma chain (P = 0.05) and peroxiredoxin 2 (P = 0.02). The identified proteins are involved in a number of different processes including platelet activation and the coagulation system.

Conclusions: The data indicates distinct synovial membrane proteome profiles between JIA subgroups at an early stage in the disease process. The identified proteins also provide insight into differentially perturbed pathways which could influence pathological events at the joint level.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Alzheimer’s disease (AD) is associated with significant disturbances in the homeostasis of Na+ and K+ ions as well as reduced levels of Na+/K+ ATPase in the brain. This study used ICP-MS to accurately quantify Na+ and K+ concentrations in human postmortem brain tissue. We analyzed parietal cortex (Brodmann area 7) from 28 cognitively normal age-matched controls, 15 cases of moderate AD, 30 severe AD, and 15 dementia with Lewy bodies (DLB). Associations were investigated between [Na+] and [K+] and a number of variables including diagnosis, age, gender, Braak tangle stage, amyloid-β (Aβ) plaque load, tau load, frontal tissue pH, and APOE genotype. Brains from patients with severe AD had significantly higher (26%; p<0.001) [Na+] (mean 65.43 ± standard error 2.91 mmol/kg) than controls, but the concentration was not significantly altered in moderate AD or DLB. [Na+] correlated positively with Braak stage (r=0.45; p<0.0001), indicating association with disease severity. [K+] in tissue was 10% lower (p<0.05) in moderate AD than controls. However, [K+] in severe AD and DLB (40.97±1.31 mmol/kg) was not significantly different from controls. There was a significant positive correlation between [K+] and Aβ plaque load (r=0.46; p=0.035), and frontal tissue pH (r=0.35; p=0.008). [Na+] was not associated with [K+] across the groups, and neither ion was associated with tau load or APOE genotype. We have demonstrated disturbances of both [Na+] and [K+] in relation to the severity of AD and markers of AD pathology, although it is possible that these relate to late-stage secondary manifestations of the disease pathology.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

With the current limited availability of organs for transplantation, it is important to consider marginal donor candidates, including survivors of potentially curable malignancies such as lymphoma. The absence of refractory/recurrent residual disease at the time of brain death can be difficult to establish. Therefore, it is critical to have objective data to decide whether to proceed or not with organ procurement and transplantation. We report a unique situation in which (18)F-fluorodeoxyglucose positron emission tomography (PET) was used to rule out Hodgkin's lymphoma recurrence in a 33-year-old, heart-beating, brain-dead, potential donor with a past history of Hodgkin's disease and a persistent mediastinal mass. PET showed no significant uptake in the mass, allowing organ donation and transplantation to occur. We present a new means of evaluating potential brain-dead donors with a past history of some lymphoma, whereby PET may help transplant physicians by optimizing donation safety while rationalizing the inclusion of marginal donors.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cerebral amyloid angiopathy (CAA) is a major feature of Alzheimer's disease pathology. In CAA, degeneration of vascular smooth muscle cells (VSMCs) occurs close to regions of the basement membrane where the amyloid protein (Aβ) builds up. In this study, the possibility that Aβ disrupts adhesive interactions between VSMCs and the basement membrane was examined. VSMCs were cultured on a commercial basement membrane substrate (Matrigel). The presence of Aβ in the Matrigel decreased cell-substrate adhesion and cell viability. Full-length oligomeric Aβ was required for the effect, as N- and C-terminally truncated peptide analogues did not inhibit adhesion. Aβ that was fluorescently labelled at the N-terminus (fluo-Aβ) bound to Matrigel as well as to the basement membrane heparan sulfate proteoglycan (HSPG) perlecan and laminin. Adhesion of VSMCs to perlecan or laminin was decreased by Aβ. As perlecan influences VSMC viability through the extracellular signal-regulated kinase (ERK)1/2 signalling pathway, the effect of Aβ1–40 on ERK1/2 phosphorylation was examined. The level of phospho-ERK1/2 was decreased in cells following Aβ treatment. An inhibitor of ERK1/2 phosphorylation enhanced the effect of Aβ on cell adhesion. The studies suggest that Aβ can decrease VSMC viability by disrupting VSMC–extracellular matrix (ECM) adhesion.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The association of RASopathies [Noonan syndrome (NS) and Noonan-related syndromes] and autoimmune disorders has been reported sporadically. However, a concomitant evaluation of autoimmune diseases and an assessment of multiple autoantibodies in a large population of patients with molecularly confirmed RASopathy have not been performed. The clinical and laboratory features were analyzed in 42 RASopathy patients, the majority of whom had NS and five individuals had Noonan-related disorders. The following autoantibodies were measured: Anti-nuclear antibodies, anti-double stranded DNA, anti-SS-A/Ro, anti-SS-B/La, anti-Sm, anti-RNP, anti-Scl-70, anti-Jo-1, anti-ribosomal P, IgG and IgM anticardiolipin (aCL), thyroid, anti-smooth muscle, anti-endomysial (AE), anti-liver cytosolic protein type 1 (LC1), anti-parietal cell (APC), anti-mitochondrial (AM) antibodies, anti-liver-kidney microsome type 1 antibodies (LKM-1), and lupus anticoagulant. Six patients (14%) fulfilled the clinical criteria for autoimmune diseases [systemic lupus erythematous, polyendocrinopathy (autoimmune thyroiditis and celiac disease), primary antiphospholipid syndrome (PAPS), autoimmune hepatitis, vitiligo, and autoimmune thyroiditis]. Autoimmune antibodies were observed in 52% of the patients. Remarkably, three (7%) of the patients had specific gastrointestinal and liver autoantibodies without clinical findings. Autoimmune diseases and autoantibodies were frequently present in patients with RASopathies. Until a final conclusion of the real incidence of autoimmunity in Rasopathy is drawn, the physicians should be alerted to the possibility of this association and the need for a fast diagnosis, proper referral to a specialist and ultimately, adequate treatment. (c) 2012 Wiley Periodicals, Inc.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

With the population of the world aging, the prominence of diseases such as Type II Diabetes (T2D) and Alzheimer’s disease (AD) are on the rise. In addition, patients with T2D have an increased risk of developing AD compared to age-matched individuals, and the number of AD patients with T2D is higher than among aged-matched non-AD patients. AD is a chronic and progressive dementia characterized by amyloid-beta (Aβ) plaques, neurofibrillary tangles (NFTs), neuronal loss, brain inflammation, and cognitive impairment. T2D involves the dysfunctional use of pancreatic insulin by the body resulting in insulin resistance, hyperglycemia, hyperinsulinemia, pancreatic beta cell (β-cell) death, and other complications. T2D and AD are considered protein misfolding disorders (PMDs). PMDs are characterized by the presence of misfolded protein aggregates, such as in T2D pancreas (islet amyloid polypeptide - IAPP) and in AD brain (amyloid– Aβ) of affected individuals. The misfolding and accumulation of these proteins follows a seeding-nucleation model where misfolded soluble oligomers act as nuclei to propagate misfolding by recruiting other native proteins. Cross-seeding occurs when oligomers composed by one protein seed the aggregation of a different protein. Our hypothesis is that the pathological interactions between T2D and AD may in part occur through cross-seeding of protein misfolding. To test this hypothesis, we examined how each respective aggregate (Aβ or IAPP) affects the disparate disease pathology through in vitro and in vivo studies. Assaying Aβ aggregates influence on T2D pathology, IAPP+/+/APPSwe+/- double transgenic (DTg) mice exhibited exacerbated T2D-like pathology as seen in elevated hyperglycemia compared to controls; in addition, IAPP levels in the pancreas are highest compared to controls. Moreover, IAPP+/+/APPSwe+/- animals demonstrate abundant plaque formation and greater plaque density in cortical and hippocampal areas in comparison to controls. Indeed, IAPP+/+/APPSwe+/- exhibit a colocalization of both misfolded proteins in cerebral plaques suggesting IAPP may directly interact with Aβ and aggravate AD pathology. In conclusion, these studies suggest that cross-seeding between IAPP and Aβ may occur, and that these protein aggregates exacerbate and accelerate disease pathology, respectively. Further mechanistic studies are necessary to determine how these two proteins interact and aggravate both pancreatic and brain pathologies.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Gluten is the main structural protein complex of wheat with equivalent toxic proteins found in other cereals (rye, barley, and oats) which are responsible for different immunologic responses with different clinical expressions of disease. The spectrum of gluten-related disorders has been classified according to pathogenic, clinical, and epidemiological differences in three main forms: (i) wheat allergy (WA), an IgE-mediated disease; (ii) autoimmune disease, including celiac disease (CD), dermatitis herpetiformis, and gluten ataxia; and (iii) possibly immune-mediated, gluten sensitivity [1]. WA is an immunologic Th2 response with typical manifestations which can vary from dermatological, respiratory, and/or intestinal to anaphylactic reactions. In contrast, CD is an autoimmune disorder, a gliadin-specific T-cell response which is enhanced by the action of intestinal tissue transglutaminase (tTG), with a wide clinical spectrum including symptomatic cases with either intestinal (e.g., chronic diarrhea, weight loss) or extraintestinal features (e.g., anemia, osteoporosis, neurologic disturbances) and silent forms that are occasionally discovered as a result of serological screening [1]. We studied wheat allergy in two children with early diagnosis of CD, who developed immediate allergic symptoms after eating small amounts of wheat flour.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Protein engineering of gluten, the exogenous effector in celiac disease, seeking its detoxification by selective chemical modification of toxic epitopes is a very attractive strategy and promising technology when compared to pharmacological treatment or genetic engineering of wheat. Here we present a simple and efficient chemo-enzymatic methodology that decreases celiac disease toxic epitopes of gluten proteins improving its technological value through microbial transglutaminase-mediated transamidation of glutamine with n-butylamine under reducing conditions. First, we found that using low concentrations of amine-nucleophile under non-reducing conditions, the decrease in toxic epitopes is mainly due to transglutaminase-mediated cross-linking. Second, using high amine nucleophile concentrations protein cross-linking is substantially reduced. Third, reducing conditions increase 7-fold the transamidation reaction further decreasing toxic epitopes amount. Fourth, using n-butylamine improves gluten hydrophobicity that strengthens the gluten network. These results open the possibility of tailoring gluten for producing hypoallergenic flours while still taking advantage of the unique viscoelastic properties of gluten.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Retinitis pigmentosa (RP) represents a genetically heterogeneous group of retinal dystrophies affecting mainly the rod photoreceptors and in some instances also the retinal pigment epithelium (RPE) cells of the retina. Clinical symptoms and disease progression leading to moderate to severe loss of vision are well established and despite significant progress in the identification of causative genes, the disease pathology remains unclear. Lack of this understanding has so far hindered development of effective therapies. Here we report successful generation of human induced pluripotent stem cells (iPSC) from skin fibroblasts of a patient harboring a novel Ser331Cysfs*5 mutation in the MERTK gene. The patient was diagnosed with an early onset and severe form of autosomal recessive RP (arRP). Upon differentiation of these iPSC towards RPE, patient-specific RPE cells exhibited defective phagocytosis, a characteristic phenotype of MERTK deficiency observed in human patients and animal models. Thus we have created a faithful cellular model of arRP incorporating the human genetic background which will allow us to investigate in detail the disease mechanism, explore screening of a variety of therapeutic compounds/reagents and design either combined cell and gene- based therapies or independent approaches.