972 resultados para Adjuvant Carrier System


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Die vorliegende Arbeit befasst sich mit der Entwicklung eines nichtviralen, effizienten Transfektionsmittels mit einer Kern-Schale-Struktur in der Größenordnung bis 100 nm. Dafür werden magnetische, negativ geladene Eisenoxid-Nanopartikel mittels Thermolyse mit einem Durchmesser von 17 nm synthetisiert und in Wasser überführt. Diese Nanopartikel bilden den Kern des Erbgut-Trägers und werden mittels Layer-by-Layer –Verfahren (LbL) mit geladenen Polymeren, den bioabbaubaren Makromolekülen Poly-L-Lysin und Heparin, beschichtet. Dafür wird zunächst eine geeignete Apparatur aufgebaut. Diese wird zur Herstellung von Kern-Schale-Strukturen mit fünf Polyelektrolytschichten verwendet und liefert Partikel mit einem hydrodynamischen Durchmesser von 58 nm, die bei Abwesenheit von niedermolekularem Salz aggregatfrei sind. Das System wird gegen Salz stabilisiert, indem die letzte Poly-L-Lysin-Schicht mit Polyethylenglycol modifiziert wird. Die so entstandenen Multischalenpartikel zeigen weder im PBS-Puffer noch in humanem Serum Aggregation. Mittels winkelabhängiger dynamischer Lichtstreuung wird die Aggregatbildung kontrolliert, während ζ-Potential-Messungen die Kontrolle der Oberflächenladung erlauben.rnDa siRNA auf Grund ihres negativ geladenen Phosphat-Rückgrats ebenfalls ein Polyelektrolyt ist, wird sie aggregatfrei auf die positiv geladenen PLL-Nanopartikel aufgetragen. Die eingesetzte siRNA ist farbstoffmarkiert, um eine Detektion in vitro zu ermöglichen. Jedoch sind die entstandenen Komplexe mittels Fluoreszenzkorrelations-spektroskopie (FCS) nicht nachweisbar. Auch die Fluoreszenzmarkierung der PEGylierten Außenschale mittels kupferfreier Click-Chemie ist in der FCS nicht sichtbar, sodass eine Fluoreszenzauslöschung der Farbstoffe in den Multischalenpartikeln vermutet wird.rn

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In orthopaedic and dental implantology, novel tools and techniques are being sought to improve the regeneration of bone tissue. Numerous attempts have been made to enhance the osteoconductivity of titanium prostheses, including modifications in their surface properties and coating with layers of calcium phosphate. The technique whereby such layers are produced has recently undergone a revolutionary change, which has had profound consequences for their potential to serve as drug-carrier systems. Hitherto, calcium phosphate layers were deposited upon the surfaces of metal implants under highly unphysiological physical conditions, which precluded the incorporation of proteinaceous osteoinductive drugs. These agents could only be adsorbed, superficially, upon preformed layers. Such superficially adsorbed molecules are released too rapidly within a biological milieu to be effective in their osteoinductive capacity. Now, it is possible to deposit calcium phosphate layers under physiological conditions of temperature and pH by the so-called biomimetic process, during which bioactive agents can be coprecipitated. Since these molecules are integrated into the inorganic latticework, they are released gradually in vivo as the layer undergoes degradation. This feature enhances the capacity of these coatings to act as a carrier system for osteogenic agents.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND The use of an enamel matrix derivative (EMD) has been shown to enhance periodontal regeneration (e.g., formation of root cementum, periodontal ligament, and alveolar bone). However, in certain clinical situations, the use of EMD alone may not be sufficient to prevent flap collapse or provide sufficient stability of the blood clot. Data from clinical and preclinical studies have demonstrated controversial results after application of EMD combined with different types of bone grafting materials in periodontal regenerative procedures. The aim of the present study is to investigate the adsorption properties of enamel matrix proteins to bone grafts after surface coating with either EMD (as a liquid formulation) or EMD (as a gel formulation). METHODS Three different types of grafting materials, including a natural bone mineral (NBM), demineralized freeze-dried bone allograft (DFDBA), or a calcium phosphate (CaP), were coated with either EMD liquid or EMD gel. Samples were analyzed by scanning electron microscopy or transmission electron microscopy (TEM) using an immunostaining assay with gold-conjugated anti-EMD antibody. Total protein adsorption to bone grafting material was quantified using an enzyme-linked immunosorbent assay (ELISA) kit for amelogenin. RESULTS The adsorption of amelogenin to the surface of grafting material varied substantially based on the carrier system used. EMD gel adsorbed less protein to the surface of grafting particles, which easily dissociated from the graft surface after phosphate-buffered saline rinsing. Analyses by TEM revealed that adsorption of amelogenin proteins were significantly farther from the grafting material surface, likely a result of the thick polyglycolic acid gel carrier. ELISA protein quantification assay demonstrated that the combination of EMD liquid + NBM and EMD liquid + DFDBA adsorbed higher amounts of amelogenin than all other treatment modalities. Furthermore, amelogenin proteins delivered by EMD liquid were able to penetrate the porous surface structure of NBM and DFDBA and adsorb to the interior of bone grafting particles. Grafting materials coated with EMD gel adsorbed more frequently to the exterior of grafting particles with little interior penetration. CONCLUSIONS The present study demonstrates a large variability of adsorbed amelogenin to the surface of bone grafting materials when enamel matrix proteins were delivered in either a liquid formulation or gel carrier. Furthermore, differences in amelogenin adsorption were observed among NBM, DFDBA, and biphasic CaP particles. Thus, the potential for a liquid carrier system for EMD, used to coat EMD, may be advantageous for better surface coating.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Polyvinylpyrrolidone (PVP) can act as potential drug delivery vehicle for porphyrin-based photosensitizers in photodynamic therapy (PDT) to enhance their stability and prevent porphyrin self-association. In the present study the interactions of PVP (MW 10 kDa) were probed with five different derivatives of chlorin e6 (CE6) bearing either one of the amino acids serine, lysine, tyrosine or arginine, or monoamino-hexanoic acid as substituent. All derivatives of CE6 (xCE) formed aggregates of a similar structure in aqueous buffer in the millimolar range. In the presence of PVP monomerization of all xCE aggregates could be proved by 1H NMR spectroscopy. xCE-PVP complex formation was confirmed by 1H NMR T2 relaxation and diffusion ordered spectroscopy (DOSY). 1H1H-NOESY data suggested that the xCE uptake into the PVP polymer matrix is governed by hydrophobic interactions. UV–vis absorption and fluorescence emission bands of xCE in the micromolar range revealed characteristic PVP-induced bathochromic shifts. The presented data point out the potential of PVP as carrier system for amphiphilic derivatives of chlorin e6. The capacity of PVP to monomerize xCE aggregates may enhance their efficiency as possible photosensitizers in PDT.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Human serum albumin (HSA) derivatized with cis-aconitic anhydride was covalently coupled to liposomes with a size of approximately 100 nm [polyaconitylated HSA (Aco-HSA) liposomes]. Within 30 min after injection into a rat, Aco-HSA liposomes were completely cleared from the blood and almost exclusively taken up by the liver, whereas in control liposomes 80% was still present in the blood at that time. Endothelial cells were shown to account for almost two-thirds of the hepatic uptake of the Aco-HSA liposomes, the remainder being recovered mainly in the liver macrophages (Kupffer cells). With fluorescently labeled liposomes it was shown that the Aco-HSA liposomes target a vast majority (>85%) of the cells in the endothelial cell population. Control liposomes were not taken up to a significant extent by the endothelial cells. Uptake of Aco-HSA liposomes by both endothelial and Kupffer cells was inhibited by preinjection with polyinosinic acid, indicating the involvement of scavenger receptors in the uptake process. The uptake of Aco-HSA liposomes by liver endothelial cells was dependent on liposome size; with increasing liposome diameter endothelial cell uptake decreased in favor of Kupffer cell uptake. We have demonstrated that massive in vivo targeting of liposomes to a defined cell population other than macrophages is possible. Aco-HSA liposomes thus may represent an attractive drug carrier system for treatment of various liver or liver endothelium-associated disorders.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Isologous and heterologous immunoglobulins have been shown to be extremely effective as tolerogenic carriers for nearly 30 years. The efficacy of these proteins is due in part to their long half-life in vivo, as well as their ability to crosslink surface IgM with Fc receptors. The concept of using IgG as a carrier molecule to induce unresponsiveness in the adult immune system has been exploited for simple haptens, such as nucleosides, as well as for peptides. To further evaluate the in vivo potential of these molecules for inducing tolerance to a defined epitope, we have engineered a fusion protein of mouse IgG1 with the immunodominant epitope 12-26 from bacteriophage lambda cI repressor protein. This 15-mer, which contains both a B-cell and T-cell epitope, has been fused in-frame to the N terminus of a mouse heavy chain IgG1 construct, thus creating a "genetic hapten-carrier" system. We describe a novel in vitro and in vivo experimental system for studying the feasibility of engineered tolerogens, consisting of a recombinant flagellin challenge antigen and a murine IgG1 tolerogen, both expressing the lambda repressor epitope 12-26. Herein, we show that peptide-grafted IgG molecules injected i.v., or expressed by transfected, autologous B cells, can efficiently modulate the cellular and humoral immune responses to immunodominant epitopes. This model displays the feasibility of "tailor-designing" immune responses to whole antigens by selecting epitopes for either tolerance or immunity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ftalocianina de alumínio-cloro (AlClPc) é um fotossensibilizador de segunda geração em terapia fotodinâmica (TFD) caracterizado por seu caráter anfifílico e tendência de auto-agregação em meio aquoso, o que prejudica seu potencial de aplicação. O aCHC é um substrato de transportadores de monocarboxilato (MCT) superexpresso em células de MCF-7. Objetivando a solubilização da AlClPc e aumento de internalização em tecidos neoplásicos nos propomos aqui o uso de DSPC e DOPC em diferentes proporções para formar vesículas lipidicas mistas (LV) na presença de aCHC como sistemas veiculadores de fármaco. Lv foi preparado pelo método de injeção etanólica e formou vesículas de dimensões nanométricas (aproximadamente 100 nm) com bom índice de polidispersão, valores negativos de potencial zeta e estáveis em meio aquoso por mais de 50 dias. AlClPc se complexou com o fosfato das LV o que conferiu uma localização interfacial às moléculas de AlClPc como demonstrado pelos resultados de supressão de fluorescência. Medidas de anisotropia, fluorescência estática e resolvida no tempo corroboram com estes resultados e demonstram que a auto-agregação da AlClPc ocorre mesmo em lipossomas. Entretanto, a veiculação da AlClPc por LV em carcinoma de células escamosas oral (OSCC) levou a um processo de desagregação demonstrado por (FLIM). Este incrível comportamento é novo e aumenta o conhecimento científico sobre o mecanismo intracelular de ação de fotossensibilizadores em TFD. Em TFD, ambos os sistemas LVIII+AlClPc e LVIII+AlClPc+aCHC não apresentaram toxicidade no escuro no período de incubação de 3 h com as concentrações de lipídios, AlClPc e aCHC iguais a 0,15 mmol/L, 0,5 umol/L e 10,0 umol/L, respectivamente. De maneira inesperada, o sistema LVIII+AlClPc foi mais eficiente em TFD que o sistema LVIII+AlClPc+aCHC, devido ao caráter antioxidante do aCHC. Estes resultados abrem uma nova perspectiva do potencial uso de LV-AlClPc para o tratamento fotodinâmico.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Liver fibrosis and its end-stage disease cirrhosis are a main cause of mortality and morbidity worldwide. Thus far, there is no efficient pharmaceutical intervention for the treatment of liver fibrosis. Liver fibrosis is characterized by excessive accumulation of the extracellular matrix (ECM) proteins. Transglutaminase (TG)-mediated covalent cross-linking has been implicated in the stabilization and accumulation of ECM in a number of fibrotic diseases. Thus, the use of tissue TG2 inhibitors has potential in the treatment of liver fibrosis. Recently, we introduced a novel group of site-directed irreversible specific inhibitors of TGs. Here, we describe the development of a liposome-based drug-delivery system for the site-specific delivery of these TG inhibitors into the liver. By using anionic or neutral-based DSPC liposomes, the TG inhibitor can be successfully incorporated into these liposomes and delivered specifically to the liver. Liposomes can therefore be used as a potential carrier system for site-specific delivery of the TG2 inhibitors into the liver, opening up a potential new avenue for the treatment of liver fibrosis and its end-stage disease cirrhosis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Phospholipid oxidation can generate reactive and electrophilic products that are capable of modifying proteins, especially at cysteine, lysine and histidine residues. Such lipoxidation reactions are known to alter protein structure and function, both with gain of function and loss of activity effects. As well as potential importance in the redox regulation of cell behaviour, lipoxidation products in plasma could also be useful biomarkers for stress conditions. Although studies with antibodies suggested the occurrence of lipoxidation adducts on ApoB-100, these products had not previously been characterized at a molecular level. We have developed new mass spectrometry-based approaches to detect and locate adducts of oxidized phospholipids in plasma proteins, as well as direct oxidation modifications of proteins, which avoid some of the problems typically encountered with database search engines leading to erroneous identifications of oxidative PTMs. This approach uses accurate mass extracted ion chromatograms (XICs) of fragment ions from peptides containing oxPTMs, and allows multiple modifications to be examined regardless of the protein that contains them. For example, a reporter ion at 184.074 Da/e corresponding to phosphocholine indicated the presence of oxidized phosphatidylcholine adducts, while 2 reporter ions at 100.078 and 82.025 Da/e were selective for allysine. ApoB-100-oxidized phospholipid adducts were detected even in healthy human samples, as well as LDL from patients with inflammatory disease. Lipidomic studies showed that more than 350 different species of lipid were present in LDL, and were altered in disease conditions. LDL clearly represents a very complex carrier system and one that offers a rich source of information about systemic conditions, with potential as indicators of oxidative damage in ageing or inflammatory diseases.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The first topic area of this thesis involved studies on the accumulation and translocation of glucosinolates (GSs), bioactive secondary plant compounds, in broccoli plants. Changes in GS accumulation and gene expression levels in response to exogeneous methyl jasmonate (MeJA) treatment were analyzed in different tissue types at different developmental stages of broccoli. Greater accumulation of GSs with MeJA treatment was observed in apical leaves of broccoli seedlings and florets of plants at harvest maturity. Increases in indolyl GS in apical leaves of seedlings and florets were coupled with the up-regulation of indolyl GS biosynthesis genes. The accumulation of indolyl GSs appears to be modulated by MeJA treatment in an organ-specific manner for optimal distribution of defense substances in the plant. Metabolic profiling of hydrophilic metabolites using GC-MS demonstrated increased accumulation of various phenolics, ascorbates and amino acids in broccoli tissues after MeJA treatment. Distinct changes in carbohydrate levels observed between different tissues (vegetative leaves and floret tissues) of broccoli plants after treatment suggest that carbon metabolism is differentially modulated by MeJA treatment in different tissue types depending on sink-source relationships. Reduced levels of hexose sugars and tricarboxylic acid intermediates after MeJA treatment may reflect the increased requirement for carbon and energy needed to drive secondary product biosynthesis to accumulate metabolites for defense against insects and other herbivores. Substantial increases of indolyl and aromatic GSs after exogenous treatment with MeJA in stem and petioles of seedlings and the existence of intact indolyl-GS forms in phloem exudates suggest enhanced de novo synthesis in combination with active transport. Indoly GSs share structural similarities with the auxin, IAA, and may interact with components of the auxin transport system for intra- and extra-cellular transport or translocation. Application of the auxin efflux inhibitor, 1-naphthylphthalamic acid (NPA) reduced MeJA-mediated accumulation of indolyl GSs in broccoli florets and seedling tissues. NPA did not inhibit expression of indolyl GS biosynthesis genes shown to be upregulated by MeJA treatment or the accumulation of tryptophan, the amino acid precursor of indolyl GSs. Exogenous application of benzyl GS to Arabidopsis roots induced ectopic expression of the PIN1 protein associated with the auxin transport system similar to treatment with NPA, again suggesting GS interaction with the auxin efflux carrier system. The inhibitory effect of NPA on MeJA-mediated accumulation of GS may be due to competitive binding of NPA to auxin efflux carrier components and that GS transport is mediated by the auxin transport system. The inhibitory effect of NPA on indolyl and aromatic GS accumulation and the bioactivity of exogenous treatment of these GS compounds in PIN1 localization, Arabidopsis root growth, and gravitrophic response suggest that indolyl and aromatic GSs may be antagonistic to IAA transport and biosynthesis. Indolyl and aromatic GSs can also be potentially converted into IAA by hydrolysis. This intrinsic feature of GSs may be the part of a sophisticated regulatory process where the metabolic pathways in the plant shift from active growth to a reversible defense posture in response to biotic or abiotic stress. It seems likely that indolyl and aromatic GSs are important compounds that provide connections between jasmonate and auxin signaling. Further studies are required to reveal the regulatory mechanism for crosstalk between the two hormones. The third part of this research was to investigate effect of selenium fertilization and MeJA treatment on accumulation of GSs in broccoli florets. Increasing dietary intake of the element selenium (Se) has been shown to reduce the risk of cancer. Simultaneous enhancement of both Se and GS concentrations in broccoli floret tissue were conducted through the combined treatment of MeJA with Se fertilization. A low level of Se fertilization (concentration) with MeJA treatment displayed no significant changes in total aliphatic GS concentrations with 90% and 50% increases in indolyl and total GSs concentrations, respectively. This result suggests that Se- and GS-enriched broccoli with improved health-promoting properties can be generated by this combined treatment. The second topic of this thesis was conducted to provide basic information required to improve biomass quality and productivity and develop tools for gene transformation in Miscanthus x giganteus. The perennial rhizomatous grass, Miscanthus x giganteus is an ideal biomass crop due to its rapid vegetative growth and high biomass yield potential. As a naturally occurring sterile hybrid, M. x giganteus must be propagated vegetatively by mechanicalling divided rhizomes or from micropropagated plantlets. The effect of callus type, age and culture methods on regeneration competence was studied to improve regeneration efficiency and shorten the period of tissue culture in M. x giganteus propagation. Seven lignin biosynthesis genes and one putative flowering gene were isolated from M. x giganteus by PCR reactions using maize othologous sequences. Southern hybridization and nuclear DNA content analysis indicated that the genes isolated from M. x giganteus exist in the genome of other Miscanthus species as multiple copies. Analysis of lignin content and histological staining of lignin deposition indicated that higher lignin content is found in mature stem node tissues compared to young leaves and apical stem nodal tissues. Cell wall lignification is associated with increasing tissue maturity in Miscanthus species. RNAi and antisense constructs harboring sequences of these genes were developed to generate Miscanthus transgenic plants with suppressed of lignin biosynthesis and delayed flowering.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Introduction: One of the most common strategies for pain control during and after surgical procedures is the use of local anesthetics. Prolonged analgesia can be safely achieved with drug delivery systems suitably chosen for each local anesthetic agent.Areas covered: This review considers drug delivery formulations of local anesthetics designed to prolong the anesthetic effect and decrease toxicity. The topics comprise the main drug delivery carrier systems (liposomes, biopolymers, and cyclodextrins) for infiltrative administration of local anesthetics. A chronological review of the literature is presented, including details of formulations as well as the advantages and pitfalls of each carrier system. The review also highlights pharmacokinetic data on such formulations, and gives an overview of the clinical studies published so far concerning pain control in medicine and dentistry.Expert opinion: The design of novel drug delivery systems for local anesthetics must focus on how to achieve higher uploads of the anesthetic into the carrier, and how to sustain its release. This comprehensive review should be useful to provide the reader with the current state-of-art regarding drug delivery formulations for local anesthetics and their possible clinical applications.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper describes the preparation of poly(DL-lactide-co-glicolide) (PLGA) nanocapsules as a drug carrier system for the local anesthetic bupivacaine. The system was characterized and its stability investigated. The results showed a size distribution with a polydispersity index of 0.12, an average diameter of 148 nm, a zeta potential of -43.5 mV and an entrapment efficiency of 75.8%. The physicochemical properties of polymeric nanocapsule suspensions (average diameter, polydispersity, zeta potential and drug association efficiency) were evaluated as a function of time to determine the formulation stability. The formulation did not display major changes in these properties over the time, and it was considered stable up to 120 days of storage at room temperature. The results reported here which refer to the initial characterization of these new formulations for the local anesthetic bupivacaine show a promising potential for future in vivo studies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Agrochemicals are amongst the contaminants most widely encountered in surface and subterranean hydrological systems. They comprise a variety of molecules, with properties that confer differing degrees of persistence and mobility in the environment, as well as different toxic, carcinogenic, mutagenic and teratogenic potentials, which can affect non-target organisms including man. In this work, alginate/chitosan nanoparticles were prepared as a carrier system for the herbicide paraquat. The preparation and physicochemical characterization of the nanoparticles was followed by evaluation of zeta potential, pH, size and polydispersion. The techniques employed included transmission electron microscopy, differential scanning calorimetry and Fourier transform infrared spectroscopy. The formulation presented a size distribution of 635 +/- 12 nm, polydispersion of 0.518, zeta potential of -22.8 +/- 2.3 mV and association efficiency of 74.2%. There were significant differences between the release profiles of free paraquat and the herbicide associated with the alginate/chitosan nanoparticles. Tests showed that soil sorption of paraquat, either free or associated with the nanoparticles. was dependent on the quantity of organic matter present. The results presented in this work show that association of paraquat with alginate/chitosan nanoparticles alters the release profile of the herbicide, as well as its interaction with the soil, indicating that this system could be an effective means of reducing negative impacts caused by paraquat. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND and PURPOSEThe PPAR-gamma agonist 15d-PGJ(2) is a potent anti-inflammatory agent but only at high doses. To improve the efficiency of 15d-PGJ(2), we used poly(D,L-lactide-co-glycolide) nanocapsules to encapsulate it, and function as a drug carrier system. The effects of these loaded nanocapsules (15d-PGJ(2)-NC) on inflammation induced by different stimuli were compared with those of free 15d-PGJ(2).EXPERIMENTAL APPROACHMice were pretreated (s.c.) with either 15d-PGJ(2)-NC or unloaded 15d-PGJ(2) (3, 10 or 30 mu g center dot kg-1), before induction of an inflammatory response by i.p. injection of either endotoxin (LPS), carrageenan (Cg) or mBSA (immune response).KEY RESULTSThe 15d-PGJ(2)-NC complex did not display changes in physico-chemical parameters or drug association efficiency over time, and was stable for up to 60 days of storage. Neutrophil migration induced by i.p. administration of LPS, Cg or mBSA was inhibited by 15d-PGJ(2)-NC, but not by unloaded 15d-PGJ(2). In the Cg model, 15d-PGJ(2)-NC markedly inhibited serum levels of the pro-inflammatory cytokines TNF-alpha, IL-1 beta and IL-12p70. Importantly, 15d-PGJ(2)-NC released high amounts of 15d-PGJ(2), reaching a peak between 2 and 8 h after administration. 15d-PGJ(2) was detected in mouse serum after 24 h, indicating sustained release from the carrier. When the same concentration of unloaded 15d-PGJ(2) was administered, only small amounts of 15d-PGJ(2) were found in the serum after a few hours.CONCLUSIONS and IMPLICATIONSThe present findings clearly indicate the potential of the novel anti-inflammatory 15d-PGJ(2) carrier formulation, administered systemically. The formulation enables the use of a much smaller drug dose, and is significantly more effective compared with unloaded 15d-PGJ(2).