978 resultados para Activated Sludge


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study examined how the floc characteristics affect dewaterability of activated sludge. The floc properties were characterized by morphological parameters (floc size distribution, fractal dimension and filament index), physical properties (flocculating ability, surface charge, relative hydrophobicity and viscosity), and chemical constituents in sludge and extracted extracellular polymeric substances (EPS), including the polymeric compounds protein, humic substances, carbohydrates and the ions Ca2+, Mg2+, Fe3+ and Al3+. The dewaterability was defined in terms of the bound water content and capillary suction time (CST). The bound water and CST corresponded to a similar indication with respect to dewaterability of activated sludge. The floc physical parameters were the most important factors which effect significantly on the water binding ability of the sludge flocs. The morphological characteristics had relatively weak impact on the dewaterability. The polymeric components protein and carbohydrate had a significant contribution to enhance the water binding ability of the sludge flocs. The effect of humic substances in the sludge on the dewaterability was, however, insignificant. The CST had good statistical correlations with the polymeric constituents measured in both sludge and the extracted EPS, and the bound water was only correlated well with the individual polymers measured in the sludge. High concentration of Ca2+, Mg2+, Fe3+ and Al3+ had significant improvement for dewaterability. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aerated stirred reactor (ASR) has been widely used in biochemical and wastewater treatment processes. The information describing how the activated sludge properties and operation conditions affect the hydrodynamics and mass transfer coefficient is missing in the literature. The aim of this study was to investigate the influence of flow regime, superficial gas velocity (U-G), power consumption unit (P/V-L), sludge loading, and apparent viscosity (pap) of activated sludge fluid on the mixing time (t(m)), gas hold-up (epsilon), and volumetric mass transfer coefficient (kLa) in an activated sludge aerated stirred column reactor (ASCR). The activated sludge fluid performed a non-Newtonian rheological behavior. The sludge loading significantly affected the fluid hydrodynamics and mass transfer. With an increase in the UG and P/V-L, the epsilon and k(L)a increased, and the t(m), decreased. The E, kLa, and tm,were influenced dramatically as the flow regime changed from homogeneous to heterogeneous patterns. The proposed mathematical models predicted the experimental results well under experimental conditions, indicating that the U-G, P/V-L, and mu(ap) had significant impact on the t(m) epsilon, and k(L)a. These models were able to give the tm, F, and kLa values with an error around +/- 8%, and always less than +/- 10%. (c) 2005 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study was to investigate the impacts of operating conditions and liquid properties on the hydrodynamics and volumetric mass transfer coefficient in activated sludge air-lift reactors. Experiments were conducted in internal and external air-lift reactors. The activated sludge liquid displayed a non-Newtonian rheological behavior. With an increase in the superficial gas velocity, the liquid circulation velocity, gas holdup and mass transfer coefficient increased, and the gas residence time decreased. The liquid circulation velocity, gas holdup and the mass transfer coefficient decreased as the sludge loading increased. The flow regime in the activated sludge air-lift reactors had significant effect on the liquid circulation velocity and the gas holdup, but appeared to have little impact on the mass transfer coefficient. The experimental results in this study were best described by the empirical models, in which the reactor geometry, superficial gas velocity and/or power consumption unit, and solid and fluid properties were employed. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a review of modelling and control of biological nutrient removal (BNR)-activated sludge processes for wastewater treatment using distributed parameter models described by partial differential equations (PDE). Numerical methods for solution to the BNR-activated sludge process dynamics are reviewed and these include method of lines, global orthogonal collocation and orthogonal collocation on finite elements. Fundamental techniques and conceptual advances of the distributed parameter approach to the dynamics and control of activated sludge processes are briefly described. A critical analysis on the advantages of the distributed parameter approach over the conventional modelling strategy in this paper shows that the activated sludge process is more adequately described by the former and the method is recommended for application to the wastewater industry (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An industrial wastewater treatment plant at Grindsted, Denmark, has suffered from bulking problems for several years caused by filamentous bacteria. Five strains were isolated from the sludge by micromanipulation, Phylogenetic analysis of the 16S rRNA gene sequences showed that the strains formed a monophyletic cluster in the Alphaproteobacteria, and they were phenotypically different from their closest relatives and from all hitherto known filamentous bacteria described (closest relative Brevundimonas vesicularis ATCC 11426(T), 89(.)8% sequence similarity). In pure culture, the cells (1(.)5-2(.)0 mu m) in filaments are Gram-negative and contain polyphosphate and polyhydroxyalkanoates. The optimum temperature for growth is 30 degrees C and the strains grow in 2 % NaCl and are oxidase- and catalase-positive. Ubiquinone 10 is the major quinone. The major fatty acid (C-18: 1 omega 7c) and smaller amounts of unsaturated fatty acids, 3-hydroxy fatty acids with a chain length of 16 and 18 carbon atoms and small amounts of 10-methyl-branched fatty acids with 18 carbon atoms (C-19: 0 10-methyl) affiliated the strains with the Methylobacterium/Xanthobacter group in the Alphaproteobacteria. The G + C content of the DNA is 42(.)9 mol% (for strain Gr1(T)). The two most dissimilar isolates by 16S rRNA gene comparison (Gr1(T) and Gr10; 97(.)7 % identical) showed 71(.)5 % DNA-DNA relatedness. Oligonucleotide probes specific for the pure cultures were designed for fluorescence in situ hybridization and demonstrated that two filamentous morphotypes were present in the Grindsted wastewater treatment plant. It is proposed that the isolates represent a new genus and species, Meganema perideroedes gen. nov., sp. nov. The type strain of Meganema perideroedes is strain Gr1(T) (=DSM 15528(T) =ATCC BAA-740(T)).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A two-stage thermophilic-mesophilic anaerobic digestion pilot-plant was operated solely on waste activated sludge (WAS) from a biological nutrient removal (BNR) plant. The first-stage thermophilic reactor (HRT 2 days) was operated at 47, 54 and 60 degrees C. The second-stage mesophilic digester (HRT 15 days) was held at a constant temperature of 36-37 degrees C. For comparison with a single-stage mesophilic process, the mesophilic digester was also operated separately with an HRT of 17 days and temperature of 36-37 degrees C. The results showed a truly thermophilic stage (60 degrees C) was essential to achieve good WAS degradation. The lower thermophilic temperatures examined did not offer advantages over single-stage mesophilic treatment in terms of COD and VS removal. At a thermophilic temperature of 60 degrees C, the plant achieved 35% VS reduction, representing a 46% increase compared to the single-stage mesophilic digester. This is a significant level of degradation which could make such a process viable in situations where there is no primary sludge generated. The fate of the biologically stored phosphorus in this BNR sludge was also investigated. Over 80% of the incoming phosphorus remained bound up with the solids and was not released into solution during the WAS digestion. Therefore only a small fraction of phosphorus would be recycled to the main treatment plant with the dewatering stream.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The treatment of effluents produced during the manufacture of metallurgical coke is normally carried out using the activated sludge process. The efficiency of activated sludges in purifying coke oven effluent depends largely on the maintenance of species of micro-organisms which destroy thiocyanate. The composition, production, toxicity and treatment of coke oven effluent at Corby steelworks are described. A review is presented which follows the progress made towards identifying and monitoring the species of bacteria which destroy thiocyanate in biological treatment plants purifying coke oven effluents. In the present study a search for bacteria capable of destroying thiocyanate led to the isolation of a species of bacteria, identified as Pseudomonas putida, which destroyed thiocyanate in the presence of succinate; this species had not previously been reported to use thiocyanate. Washed cell suspensions of P. putida destroyed phenol and thiocyanate simultaneously and thiocyanate destruction was not suppressed by pyridine, aniline or catechol at the highest concentrations normally encountered in coke oven effluent. The isolate has been included, as N.C.I.B. 11198, in the National Collection of Industrial Bacteria, Torrey Research Station, Aberdeen. Three other isolates, identified as Achromobacter sp., Thiobacillus thioparus and T. denitrificans, were also confirmed to destroy thi.ocyanate. A technique has been developed for monitoring populations of different species of bacteria in activated sludges. Application of this technique to laboratory scale and full scale treatment plants at Corby showed that thiobacilli were usually not detected; thiobacilli were el~inated during the commissioning period of the full scale plant. However experiments using a laboratory scale plant indicated that during a period of three weeks an increase in the numbers of thiobacilli might have contributed to an improvement in plant performance. Factors which might have facilitated the development of thiobacilli are discussed. Large numbers of fluorescent pseudomonads capable of using thiocyanate were sometimes detected in the laboratory scale plant. The possibility is considered that catechol or other organic compounds in the feed-liquor might have stimulated fluorescent pseudmonads. Experiments using the laboratory scale plant confirmed that deteriorations in the efficiency of thiocyanate destruction were sometimes caused by bulking sludges, due to the excessive growth of fungal floes. Increased dilution of the coke oven effluent was a successful remedy to this difficulty. The optimum operating conditions recommended by the manufacturer of the full scale activated sludge plant at Corby are assessed and the role of bacterial monitoring in a programme of regular monitoring tests is discussed in relation to the operation of activated sludge plants treating coke oven effluents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This is an Inter-Disciplinary Higher Degree (IHD) thesis about Water Pollution Control in the Iron and Steel Industry. After examining the compositions, and various treatment methods, for the major effluent streams from a typical Integrated Iron and Steel works, it was decided to concentrate investigative work on the activated-sludge treatment of coke-oven effluents. A mathematical model of this process was developed in an attempt to provide a tool for plant management that would enable improved performance, and enhanced control of Works Units. The model differs from conventional models in that allowance is made for the presence of two genera of microorganisms, each of which utilises a particular type of substrate as its energy source. Allowance is also made for the inhibitive effect of phenol on thiocyanate biodegradation, and for the self-toxicity of the bacteria when present in a high substrate concentration environment. The enumeration of the kinetic characteristics of the two groups of micro-organisms was shown to be of major importance. Laboratory experiments were instigated in an attempt to determine accurate values of these coefficients. The use of the Suspended Solids concentration was found to be too insensitive a measure of viable active mass. Other measures were investigated, and Adenosine Triphosphate concentration was chosen as the most effective measure of bacterial populations. Using this measure, a model was developed for phenol biodegradation from experimental results which implicated the possibility of storage of substate prior to metabolism. A model for thiocyanate biodegradation was also developed, although the experimental results indicate that much work is still required in this area.