457 resultados para CCL1 chemokine


Relevância:

10.00% 10.00%

Publicador:

Resumo:

High-grade serous ovarian cancer (HGSC) is the most prevalent epithelial ovarian cancer characterized by late detection, metastasis and resistance to chemotherapy. Previous studies on the tumour immune microenvironment in HGSC identified STAT1 and CXCL10 as the most differentially expressed genes between treatment naïve chemotherapy resistant and sensitive tumours. Interferon-induced STAT1 is a transcription factor, which induces many genes including tumour suppressor genes and those involved in recruitment of immune cells to the tumour immune microenvironment (TME), including CXCL10. CXCL10 is a chemokine that recruits tumour infiltrating lymphocytes (TILs) and exhibits angiostatic function. The current study was performed to determine the effects of differential STAT1 and CXCL10 expression on HGSC disease progression and TME. STAT1 expression and intratumoural CD8+ T cells were evaluated as prognostic and predictive biomarkers via immunohistochemistry on 734 HGSC tumours accrued from the Terry Fox Research Institute-Canadian Ovarian Experimental Unified Resource. The combined effect of STAT1 expression and CD8+ TIL density was confirmed as prognostic and predictive companion biomarkers in the second independent biomarker validation study. Significant positive correlation between STAT1 expression and intratumoral CD8+ TIL density was observed. The effects of enforced CXCL10 expression on HGSC tumour growth, vasculature and immune tumour microenvironment were studied in the ID8 mouse ovarian cancer cell engraftment in immunocompetent C57BL/6 mice. Significant decrease in tumour progression in mice injected with ID8 CXCL10 overexpressing cells compared to mice injected with ID8 vector control cells was observed. Multiplexed cytokine analysis of ascites showed differential expression of IL-6, VEGF and CXCL9 between the two groups. Endothelial cell marker staining showed differences in tumour vasculature between the two groups. Immune transcriptomic profiling identified distinct expression profiles in genes associated with cytokines, chemokines, interferons, T cell function and apoptosis between the two groups. These findings provide evidence that STAT1 is an independent biomarker and in combination with CD8+ TIL density could be applied as novel immune-based biomarkers in HGSC. These results provide the basis for future studies aimed at understanding mechanisms underlying differential tumour STAT1 and CXCL10 expression and its role in pre-existing tumour immunologic diversity, thus potentially contributing to biomarker guided immune modulatory therapies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Spontaneous fetal loss (25-40%) leading to decrease in litter size is a significant concern to the pork industry. A deficit in the placental vasculature has emerged as one of the important factors associated with fetal loss. During early pig pregnancy, the endometrium becomes enriched with immune cells recruited by conceptus-derived signals including specific chemokine stimuli. These immune cells assist in various aspects of placental development and angiogenesis. Recent evidence suggests that microRNAs (miRNAs: small non-coding RNAs that regulate gene expression) regulate immune cell development and their functions. In addition, intercellular communication including exchange of biomolecules (e.g. miRNAs) between the conceptus and endometrium regulate key developmental processes during pregnancy. To understand the biological significance of immune cell enrichment, regulation of their functions by miRNAs and transfer of miRNAs across the maternal fetal-interface, we screened specific sets of chemokines and pro- and anti-angiogenic miRNAs in endometrial lymphocytes (ENDO LY), endometrium, and chorioallantoic membrane (CAM) isolated from conceptus attachment sites (CAS) during early, gestation day (gd)20 and mid-pregnancy (gd50). We report increased expression of selected chemokines including CXCR3 and CCR5 in ENDO LY and CXCL10, CXCR3, CCL5, CCR5 in endometrium associated with arresting CAS at gd20. Some of these differences were also noted at the protein level (CXCL10, CXCR3, CCL5, and CCR5) in endometrium and CAM. We report for the first time significant differences for miRNAs involved in immune cell-derived angiogenesis (miR-296-5P, miR-150, miR-17P-5P, miR-18a, and miR-19a) between ENDO LY associated with healthy and arresting CAS. Significant differences were also found in endometrium and CAM for some miRNAs (miR-17-5P, miR-18a, miR-15b-5P, and miR-222). Finally, we confirm that placenta specific-exosomes contain proteins and 14 select miRNAs including miR-126-5P, miR-296-5P, miR-16, and miR-17-5P that are of relevance to early implantation events. We further demonstrated the bidirectional exosome shuttling between porcine trophectoderm cells (PTr2) and porcine aortic endothelial cells (PAOEC). PTr2-derived exosomes were able to modulate the endothelial cell proliferation that is crucial for the establishment of pregnancy. Our data unravels the selected chemokines and miRNAs associated with immune cell-regulated angiogenesis and reconfirm that exosome mediated cell-cell communication opens-up new avenues to understand porcine pregnancy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Heart failure with preserved ejection fraction (HFPEF) is a major health problem associated with myocardial leukocyte infiltration, inflammation, and fibrosis. Monocyte and macrophage subsets play a role in HFPEF but have not been studied. We analyzed peripheral blood monocyte phenotype and plasma markers of monocyte activation in patients with HFPEF, asymptomatic LV diastolic dysfunction (aLVDD), and asymptomatic hypertension (aHTN).

METHODS AND RESULTS: Peripheral blood was collected from 23 aHTN, 30 aLVDD, and 30 HFPEF patients. Peripheral cytokines of classic/pro-inflammatory (tumor necrosis factor alpha, interleukin (IL) 12, IL-6, monocyte chemoattractant protein 1, C-X-C motif chemokine 10) and alternative/anti-inflammatory monocytes (chemokine-C-C motif ligand (CCL) 17, CCL-18, soluble CD163) were increased in aLVDD and HFPEF. Peripheral blood mononuclear cells and monocytes were purified and surface-stained for CD14, CD16, CD163, and CD206. Peripheral monocyte percentage was increased in aLVDD and HFPEF and correlated with echocardiographic LVDD indices. Classic/pro-inflammatory monocyte numbers were increased in aLVDD and HFPEF, and alternative/anti-inflammatory monocyte numbers were increased in HFPEF. CD163 M2-macrophage receptor was reduced in HFPEF. Culture of healthy donor monocytes (n = 3) with HFPEF patient-derived sera (n = 6) promoted M2 macrophage features as evidenced by altered morphology and genes (CD206, IL-10).

CONCLUSIONS: Increased peripheral inflammation, monocytosis, and monocyte differentiation to anti-inflammatory/profibrotic M2 macrophages likely associate with HFPEF and its precedent asymptomatic LVDD phase.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

B-type natriuretic peptide (BNP) is a prognostic and diagnostic marker for heart failure (HF). An anti-inflammatory, cardio-protective role for BNP was proposed. In cardiovascular diseases including pressure overload-induced HF, perivascular inflammation and cardiac fibrosis are, in part, mediated by monocyte chemoattractant protein (MCP)1-driven monocyte migration. We aimed to determine the role of BNP in monocyte motility to MCP1. A functional BNP receptor, natriuretic peptide receptor-A (NPRA) was identified in human monocytes. BNP treatment inhibited MCP1-induced THP1 (monocytic leukemia cells) and primary monocyte chemotaxis (70 and 50 %, respectively). BNP did not interfere with MCP1 receptor expression or with calcium. BNP inhibited activation of the cytoskeletal protein RhoA in MCP1-stimulated THP1 (70 %). Finally, BNP failed to inhibit MCP1-directed motility of monocytes from patients with hypertension (n = 10) and HF (n = 6) suggesting attenuation of this anti-inflammatory mechanism in chronic heart disease. We provide novel evidence for a direct role of BNP/NPRA in opposing human monocyte migration and support a role for BNP as a cardio-protective hormone up-regulated as part of an adaptive compensatory response to combat excess inflammation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

AIMS: Hypertension is one of the main drivers of the heart failure (HF) epidemic. The aims of this study were to profile fibro-inflammatory biomarkers across stages of the hypertensive heart disease (HHD) spectrum and to examine whether particular biochemical profiles in asymptomatic patients identify a higher risk of evolution to HF.

METHODS AND RESULTS: This was a cross-sectional observational study involving a population of 275 stable hypertensive patients divided into two different cohorts: Group 1, asymptomatic hypertension (AH) (n= 94); Group 2, HF with preserved ejection fraction (n= 181). Asymptomatic hypertension patients were further subdivided according to left atrial volume index ≥34 mL/m(2) (n= 30) and <34 mL/m(2) (n= 64). Study assays involved inflammatory markers [interleukin 6 (IL6), interleukin 8 (IL8), monocyte chemoattractant protein 1 (MCP1), and tumour necrosis factor α], collagen 1 and 3 metabolic markers [carboxy-terminal propeptide of collagen 1, amino-terminal propeptide of collagen 1, amino-terminal propeptide of collagen 3 (PIIINP), and carboxy-terminal telopeptide of collagen 1 (CITP)], extra-cellular matrix turnover markers [matrix metalloproteinase 2 (MMP2), matrix metalloproteinase 9 (MMP9), and tissue inhibitor of metalloproteinase 1 (TIMP1)], and the brain natriuretic peptide. Data were adjusted for age, sex, systolic blood pressure, and creatinine. Heart failure with preserved ejection fraction was associated with an increased inflammatory signal (IL6, IL8, and MCP1), an increased fibrotic signal (PIIINP and CITP), and an increased matrix turnover signal (MMP2 and MMP9). Alterations in MMP and TIMP enzymes were found to be significant indicators of greater degrees of asymptomatic left ventricular diastolic dysfunction.

CONCLUSION: These data define varying fibro-inflammatory profiles throughout different stages of HHD. In particular, the observations on MMP9 and TIMP1 raise the possibility of earlier detection of those at risk of evolution to HF which may help focus effective preventative strategies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Severe asthma represents a major unmet clinical need. Eosinophilic inflammation persists in the airways of many patients with uncontrolled asthma, despite high-dose inhaled corticosteroid therapy. Suppressors of cytokine signalling (SOCS) are a family of molecules involved in the regulation of cytokine signalling via inhibition of the Janus kinase-signal transducers and activators of transcription pathway. We examined SOCS expression in the airways of asthma patients and investigated whether this is associated with persistent eosinophilia.

Healthy controls, mild/moderate asthmatics and severe asthmatics were studied. Whole genome expression profiling, quantitative PCR and immunohistochemical analysis were used to examine expression of SOCS1, SOCS2 and SOCS3 in bronchial biopsies. Bronchial epithelial cells were utilised to examine the role of SOCS1 in regulating interleukin (IL)-13 signalling in vitro.

SOCS1 gene expression was significantly lower in the airways of severe asthmatics compared with mild/moderate asthmatics, and was inversely associated with airway eosinophilia and other measures of T-helper type 2 (Th2) inflammation. Immunohistochemistry demonstrated SOCS1 was predominantly localised to the bronchial epithelium. SOCS1 overexpression inhibited IL-13-mediated chemokine ligand (CCL) 26 (eotaxin-3) mRNA expression in bronchial epithelial cells.

Severe asthma patients with persistent airway eosinophilia and Th2 inflammation have reduced airway epithelial SOCS1 expression. SOCS1 inhibits epithelial IL-13 signalling, supporting its key role in regulating Th2-driven eosinophilia in severe asthma.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: We report the use of an ex vivo precision cut liver slice (PCLS) mouse model for studying hepatic schistosomiasis. In this system, liver tissue is unfixed, unfrozen, and alive for maintenance in culture and subsequent molecular analysis.

METHODS AND FINDINGS: Using thick naive mouse liver tissue and sterile culture conditions, the addition of soluble egg antigen (SEA) derived from Schistosoma japonicum eggs, followed 4, 24 and 48 hrs time points. Tissue was collected for transcriptional analysis and supernatants collected to quantitate liver enzymes, cytokines and chemokines. No significant hepatotoxicity was demonstrated by supernatant liver enzymes due to the presence of SEA. A proinflammatory response was observed both at the transcriptional level and at the protein level by cytokine and chemokine bead assay. Key genes observed elevated transcription in response to the addition of SEA included: IL1-α and IL1-β, IL6, all associated with inflammation. The recruitment of antigen presenting cells was reflected in increases in transcription of CD40, CCL4 and CSF1. Indications of tissue remodeling were seen in elevated gene expression of various Matrix MetalloProteinases (MMP3, 9, 10, 13) and delayed increases in TIMP1. Collagen deposition was significantly reduced in the presence of SEA as shown in COL1A1 expression by qPCR after 24 hrs culture. Cytokine and chemokine analysis of the culture supernatants confirmed the elevation of proteins including IL6, CCL3, CCL4 and CXCL5.

CONCLUSIONS: This ex vivo model system for the synchronised delivery of parasite antigen to liver tissue provides an insight into the early phase of hepatic schistosomiasis, corresponding with the release of soluble proteins from dying schistosome eggs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Previously we identified a DNA damage response-deficient (DDRD) molecular subtype within breast cancer. A 44-gene assay identifying this subtype was validated as predicting benefit from DNA-damaging chemotherapy. This subtype was defined by interferon signaling. In this study, we address the mechanism of this immune response and its possible clinical significance.

METHODS: We used immunohistochemistry (IHC) to characterize immune infiltration in 184 breast cancer samples, of which 65 were within the DDRD subtype. Isogenic cell lines, which represent DDRD-positive and -negative, were used to study the effects of chemokine release on peripheral blood mononuclear cell (PBMC) migration and the mechanism of immune signaling activation. Finally, we studied the association between the DDRD subtype and expression of the immune-checkpoint protein PD-L1 as detected by IHC. All statistical tests were two-sided.

RESULTS: We found that DDRD breast tumors were associated with CD4+ and CD8+ lymphocytic infiltration (Fisher's exact test P < .001) and that DDRD cells expressed the chemokines CXCL10 and CCL5 3.5- to 11.9-fold more than DNA damage response-proficient cells (P < .01). Conditioned medium from DDRD cells statistically significantly attracted PBMCs when compared with medium from DNA damage response-proficient cells (P < .05), and this was dependent on CXCL10 and CCL5. DDRD cells demonstrated increased cytosolic DNA and constitutive activation of the viral response cGAS/STING/TBK1/IRF3 pathway. Importantly, this pathway was activated in a cell cycle-specific manner. Finally, we demonstrated that S-phase DNA damage activated expression of PD-L1 in a STING-dependent manner.

CONCLUSIONS: We propose a novel mechanism of immune infiltration in DDRD tumors, independent of neoantigen production. Activation of this pathway and associated PD-L1 expression may explain the paradoxical lack of T-cell-mediated cytotoxicity observed in DDRD tumors. We provide a rationale for exploration of DDRD in the stratification of patients for immune checkpoint-based therapies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-08

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction: Among the inflammatory mediators involved in the pathogenesis of obesity, the cell adhesion molecules P-selectin, E-selectin, VCAM-1, ICAM-1 and the chemokine MCP-1 stand out. They play a crucial role in adherence of cells to endothelial surfaces, in the integrity of the vascular wall and can be modulated by body composition and dietary pattern. Objectives: To describe and discuss the relation of these cell adhesion molecules and chemokines to anthropometric, body composition, dietary and biochemical markers. Methods: Papers were located using scientific databases by topic searches with no restriction on year of publication. Results: All molecules were associated positively with anthropometric markers, but controversial results were found for ICAM-1 and VCAM-1. Not only obesity, but visceral fat is more strongly correlated with E-selectin and MCP-1 levels. Weight loss influences the reduction in the levels of these molecules, except VCAM-1. The distribution of macronutrients, excessive consumption of saturated and trans fat and a Western dietary pattern are associated with increased levels. The opposite could be observed with supplementation of w-3 fatty acid, healthy dietary pattern, high calcium diet and high dairy intake. Regarding the biochemical parameters, they have inverse relation to HDLC and positive relation to total cholesterol, triglycerides, blood glucose, fasting insulin and insulin resistance. Conclusion: Normal anthropometric indicators, body composition, biochemical parameters and eating pattern positively modulate the subclinical inflammation that results from obesity by reducing the cell adhesion molecules and chemokines.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Feline immunodeficiency virus (FIV) is a naturally occurring lentivirus of domestic cats, which shares many similarities with its human counterpart, human immunodeficiency virus (HIV). FIV infects its main target cell, the CD4+ T lymphocyte, via interactions with its primary receptor CD134 (an activation marker expressed on activated CD4+ T lymphocytes), and, the chemokine receptor CXCR4. According to the different ways in which FIV isolates interact with CD134, FIV may be categorised into two groups. The first group contains strains that tend to dominate during the earlier phase of infection, such as GL8 and CPG41. These strains are characterized by their requirement for an additional interaction with the second cysteine rich domain (CRD2) of the CD134 molecule and are classified as “CRD2-dependent” strains. The second group, on the other hand, contains either laboratory-adapted isolates or isolates that emerge after several years of infection, such as PPR or the GL8 variants that emerged in cats 6 years post experimental infection and were studied in this thesis. These isolates are designated “CRD2-independent” as they can infect target cells without interacting with CRD2 of the CD134 molecule. This study provides the first evidence that FIV compartmentalisation is related to FIV-CD134 usage and the tissue availability of CD134+ target cells. In tissue compartments containing high levels of CD134+ cells such as peripheral blood and lymph nodes, CRD2-dependent viruses predominated, whereas CRD2-independent viruses predominated in compartments with fewer CD134+ cells, such as the thymus. The dynamics of CD4+CD134+ T lymphocytes at different stages of FIV infection were also described. The levels of CD4+CD134+ T lymphocytes, which were very high in the early phase, gradually decreased in the later phase of infection. The dynamics of CD4+CD134+ T lymphocyte numbers appeared to correlate with FIV tropism switching, as more CRD2-independent viruses were isolated from cats in the late phase of infection. Moreover, it was observed that pseudotypes bearing Envs of CRD2-dependent variants infected CD134+ target cells more efficiently than pseudotypes bearing Envs of CRD2-independent variants, confirming the selective advantage of CRD2-dependent variants in environments with high levels of CD134+ target cells. In conclusion, this study demonstrated that target cell types and numbers, as well as their dynamics, play important roles in the selection and expansion of FIV variants within the viral quasispecies. Improved understanding of the roles of target cells in FIV transmission and pathogenesis will provide important information required for the development of an improved, more successful protective FIV vaccine and will provide insight into the development of effective vaccines against other lentiviral infections such as HIV.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polymorphisms in chemokine receptors play an important role in the progression of cervical intraepithelial neoplasia (CIN) to cervical cancer (CC). Our study examined the association of CCR2-64I (rs1799864) and CCR5-Δ32 (rs333) polymorphisms with susceptibility to develop cervical lesion (CIN and CC) in a Brazilian population. The genotyping of 139 women with cervical lesions and 151 women without cervical lesions for the CCR2-64I and CCR5-Δ32 polymorphisms were performed using polymerase chain reaction-restriction fragment length polymorphism. The individuals carrying heterozygous or homozygous genotypes (GA+AA) for CCR2-64I polymorphisms seem to be at lower risk for cervical lesion [odds ratio (OR) = 0.37, p = 0.0008)]. The same was observed for the A allele (OR = 0.39, p = 0.0002), while no association was detected (p > 0.05) with CCR5-Δ32 polymorphism. Regarding the human papillomavirus (HPV) type, patients carrying the CCR2-64I polymorphism were protected against infection by HPV type 16 (OR = 0.35, p = 0.0184). In summary, our study showed a protective effect of CCR2-64I rs1799864 polymorphism against the development of cervical lesions (CIN and CC) and in the susceptibility of HPV 16 infection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: To investigate the activity and mechanism of action of arbidol against Hantaan virus (HTNV) activity by modulating inflammation via TLR-4 pathway. Methods: HUVEC cells infected with HTNV 76-118 were treated with serially diluted arbidol solutions at -2h (2 h before viral infection, pre-treatment mode), 0 h (at the same time as viral infection, simultaneous treatment mode) or 2 h (2 h after viral infection, post-treatment mode). The transcript levels of TLR4 were detected by semi-quantitative reverse transcription-PCR (RT-PCR) at 6, 12, 18, and 24 h later. The levels of iNOS and TNF-α were examined using enzyme-linked immunosorbent assay (ELISA). Results: Pre-treatment with arbidol, rather than simultaneous treatment or post-treatment, effectively inhibited up-regulation of cellular TLR4 expression (up to 40 ± 6.1 % inhibition) and activity of supernatant iNOS induced by HTNV infection(up to 44.1 ± 9.4 % inhibition), as well as in a LPSstimulated inflammatory endothelial cell. Arbidol decreased the elevated TNF-α levels induced by LPS stimulation. Conclusion: These results are the first evidence that arbidol modulates viral PRRs signaling and its consequential inflammatory cytokine/chemokine response during hantavirus infection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Swine are susceptible to infection by both avian and human influenza viruses, and this feature is thought to contribute to novel reassortant influenza viruses. In this study, the influenza virus reassortment rate in swine and human cells was determined. Coinfection of swine cells with 2009 pandemic H1N1 virus (huH1N1) and an endemic swine H1N2 (A/swine/Illinois/02860/09) virus (swH1N2) resulted in a 23% reassortment rate that was independent of α2,3- or α2,6-sialic acid distribution on the cells. The reassortants had altered pathogenic phenotypes linked to introduction of the swine virus PA and neuraminidase (NA) into huH1N1. In mice, the huH1N1 PA and NA mediated increased MIP-2 expression early postinfection, resulting in substantial pulmonary neutrophilia with enhanced lung pathology and disease. The findings support the notion that swine are a mixing vessel for influenza virus reassortants independent of sialic acid distribution. These results show the potential for continued reassortment of the 2009 pandemic H1N1 virus with endemic swine viruses and for reassortants to have increased pathogenicity linked to the swine virus NA and PA genes which are associated with increased pulmonary neutrophil trafficking that is related to MIP-2 expression. IMPORTANCE: Influenza A viruses can change rapidly via reassortment to create a novel virus, and reassortment can result in possible pandemics. Reassortments among subtypes from avian and human viruses led to the 1957 (H2N2 subtype) and 1968 (H3N2 subtype) human influenza pandemics. Recent analyses of circulating isolates have shown that multiple genes can be recombined from human, avian, and swine influenza viruses, leading to triple reassortants. Understanding the factors that can affect influenza A virus reassortment is needed for the establishment of disease intervention strategies that may reduce or preclude pandemics. The findings from this study show that swine cells provide a mixing vessel for influenza virus reassortment independent of differential sialic acid distribution. The findings also establish that circulating neuraminidase (NA) and PA genes could alter the pathogenic phenotype of the pandemic H1N1 virus, resulting in enhanced disease. The identification of such factors provides a framework for pandemic modeling and surveillance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High rates of mutation and recombination help human immunodeficiency virus (HIV) to evade the immune system and develop resistance to antiretroviral therapy. Macrophages and T-cells are the natural target cells of HIV-1 infection. A consensus has not been reached as to whether HIV replication results in differential recombination between primary T-cells and macrophages. Here, we used HIV with silent mutation markers along with next generation sequencing to compare the mutation and the recombination rates of HIV directly in T lymphocytes and macrophages. We observed a more than four-fold higher recombination rate of HIV in macrophages compared to T-cells (p < 0.001) and demonstrated that this difference is not due to different reliance on C-X-C chemokine receptor type 4 (CXCR4) and C-C chemokine receptor type 5 (CCR5) co-receptors between T-cells and macrophages. We also found that the pattern of recombination across the HIV genome (hot and cold spots) remains constant between T-cells and macrophages despite a three-fold increase in the overall recombination rate. This indicates that the difference in rates is a general feature of HIV DNA synthesis during macrophage infection. In contrast to HIV recombination, we found that T-cells have a 30% higher mutation rate than macrophages (p < 0.001) and that the mutational profile is similar between these cell types. Unexpectedly, we found no association between mutation and recombination in macrophages, in contrast to T-cells. Our data highlights some of the fundamental difference of HIV recombination and mutation amongst these two major target cells of infection. Understanding these differences will provide invaluable insights toward HIV evolution and how the virus evades immune surveillance and anti-retroviral therapeutics.