36 resultados para titanocene


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Titanocene compounds are a novel series of agents that exhibit cytotoxic effects in a variety of human cancer cells in vitro and in vivo. In this study, the antiproliferative activity of two titanocenes (Titanocenes X and Y) was evaluated in human epidermoid cancer cells in vitro. Titanocenes X and Y induce apoptotic cell death in epidermoid cancer cells, with IC50 values that are comparable to cisplatin. Characterisation of the cell death pathway induced by titanocene compounds in A431 cells revealed that apoptosis is preceded by cell cycle arrest and the inhibition of cell proliferation. The induction of apoptosis is dependent on the activation of caspase-3 and -7 but not caspase-8. Furthermore, the antitumour activity of Titanocene Y was tested in an A431 xenograft model of epidermoid cancer. Results indicate that Titanocene Y significantly reduced the growth of A431 xenografts with an antitumour effect similar to cisplatin. These results suggest that titanocenes represent a novel series of promising antitumour agents.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work is a study of coordination compounds by quantum theory of atoms in molecules (QTAIM), based on the topological analysis of the electron density of molecular systems, both theoretically and experimentally obtained. The coordination chemistry topics which were studied are the chelate effect, bent titanocene and chemical bond in coordination complexes. The chelate effect was investigated according to topological and thermodynamic parameters. The exchange of monodentate ligands on polydentate ligands from same transition metal increases the stability of the complex both from entropy and enthalpy contributions. In some cases, the latter had a higher contribution to the stability of the complex in comparison with entropy. This enthalpic contribution is explained according to topological analysis of the M-ligand bonds where polidentate complex had higher values of electron density of bond critical point, Laplacian of electron density of bond critical point and delocalization index (number of shared electrons between two atoms). In the second chapter, was studied bent titanocenes with bulky cyclopentadienyl derivative π-ligand. The topological study showed the presence of secondary interactions between the atoms of π-ligands or between atoms of π-ligand and -ligand. It was found that, in the case of titanocenes with small difference in point group symmetry and with bulky ligands, there was an nearly linear relationship between stability and delocalization index involving the ring carbon atoms (Cp) and the titanium. However, the titanocene stability is not only related to the interaction between Ti and C atoms of Cp ring, but secondary interactions also play important role on the stability of voluminous titanocenes. The third chapter deals with the chemical bond in coordination compounds by means of QTAIM. The quantum theory of atoms in molecules so far classifies bonds and chemical interactions in two categories: closed shell interaction (ionic bond, hydrogen bond, van der Waals interaction, etc) and shared interaction (covalent bond). Based on topological parameters such as electron density, Laplacian of electron density, delocalization index, among others, was classified the chemical bond in coordination compounds as an intermediate between closed shell and shared interactions

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Titanocenos são catalisadores solúveis conhecidos para a polimerisação estereoespecífica de olefinas pró-quirais como o estireno. Nesse trabalho descrevemos as relações entre as características do poliestireno e a estrutura do precursor do catalisador, de fato aqueles da família (RCp)2TiCl2 (R = H, etila, iso-propila, n-propila, sec-butila, n-butila, iso-amila e ciclohexila). Todos os catalisadores são ativos para a produção de poliestireno acima de zero graus centígrados. A sindiotaticidade dos polímeros são dependentes da cadeia lateral dos anéis aromáticos do titanoceno e da temperatura da polimerização. A relação entre os fatores estéricos e eletrônicos do precursor do catalisador e os produtos de polimerização são apresentados e discutidos.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work we have:investigated the growth and differentiation of bone marrow stem cells in mice bearing Ehrlich ascites tumor-and treated with three dose-regimens of Dicyclopentadienyldichlorotitanium (IV) (DDCT). We also: studied the presence of colony stimulating factors In the serum of PDCT-treated animals as well-as the effects-of the drug on the survival of the tumor-bearing mice. The-results demonstrated that the myelosuppression developed in the tumor-bearing animals is prevented by the administration:of 1, 2 or 3 doses of 15 mg/kg DDCT. In the treatment with three doses, however, 23 % of the animals died. Moreover, DDCT treatment in normal animals resulted in increased numbers of CFU-GM. We observed the presence of stimulating factors in the serum of drug-treated animals which induced the growth and differentiation of bone marrow progenitor cells from normal animals in vitro. on the other hand, in vitro addition of the drug to these cultures had no effect. Thus, we conclude that the drug protects against the myelosuppression induced by the tumor and that this protection may be related to an indirect action of the drug. (C) 1998 International Society for Immunopharmacology. Published by Elsevier B.V. Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present work, we studied the effects of two titanocenes, biscyclopentadienyidichlorotitanium IV, (DDCT) and its derivative, biscyclopentadienylditiocianatetitanium IV (BCDT), on the activity of natural killer (NK) cells in Ehrlich ascites tumour (EAT)-bearing BALB/c mice. In order to investigate a more direct effect of these compounds on NK cell function, we performed experiments with severe combined immunodeficiency (SCID) mice, which exhibit a normal NK cell response in the absence of T and B cells. The treatment consisted of intraperitoneal (i.p.) administration of 15 mg/kg/day of DDCT for 2 days or 10 mg/kg/day of BCDT for 3 days. In addition, to verify whether the effects produced by the titanocenes were compound specific or related to a direct antitumour effect, we also investigated the effects of a 3-day treatment with 100 mg/kg of cyclophosphamide cyclophosphamide on NK cell activity. Our results demonstrated that, in BALB/c and SCID mice, NK cell function declined to subnormal levels after inoculation of the tumour. In these animals, although treatment with DDCT and BCDT significantly enhanced NK cell function, only DDCT restored NK cell activity to normal values in all stages studied. Conversely, treatment with cyclophosphamide reduced NK cell function in nontumour bearing SCID mice and was also unable to restore the decreased NK activity of tumour-bearing SCID mice, thus demonstrating that the enhancement of NK cell function by titanocenes is compound specific. The same effect of cyclophosphamide was observed with BALB/c mice. In the present study, the up-modulatory effects of these two compounds on NK cell function reveal a new aspect of the mechanism of antitumoural action of titanocenes. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cancer is one of the most severe and widespread diseases and an ideal treatment has not yet been found. In the last decades, cisplatinum was commonly applied in cancer therapy with very good results. However, serious side effects and resistant tumors necessitated the development of new antineoplastic agents, such as metallocenes dihalides. These are metal-based compounds exhibiting two cyclopentadienyl ligands and a cis-dihalide motif. They resemble the cis-chloro configuration of cisplatinum, which propounds a similar mode of action. Metallocenes comprising one of the transition metals titanium, molybdenum, vanadium, niobium, and zirconium as the metal center have been shown to be effective against several cancer cell lines. Evidence for the accumulation of metallocenes in the nucleus implied that DNA is one of the major targets. Although several studies reported adduct formation of metallocenes with nuclear DNA, as yet substantial information about the general binding pattern and the binding to higher-order structures is lacking. Mass spectrometry can fill this gap as it constitutes a powerful technique to investigate the formation of organometallic adducts. Presented data demonstrate that the two agents titanocene dichloride and molybdenocene dichloride bind to single-stranded DNA and RNA. Distinct fragment ions formed upon collision-induced dissociation help to unravel preferential binding sites within the oligonucleotides. Moreover, adducts with duplexes and quadruplexes shed light on the molecular mechanism of action.