973 resultados para targeted delivery


Relevância:

70.00% 70.00%

Publicador:

Resumo:

We describe here the chemical synthesis and in vitro drug delivery response of polyethylene glycol (PEG)-functionalized magnetite (Fe3O4) nanoparticles, which were activated with a stable ligand, folic acid, and conjugated with an anticancer drug, doxorubicin. The functionalization and conjugation steps in the chemical synthesis were confirmed using Fourier transform infrared spectroscopy. The drug-release behavior of PEG-functionalized and folic acid-doxorubicin-conjugated magnetic nanoparticles was characterized by two stages involving an initial rapid release, followed by a controlled release. (C) 2007 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Intercellular adhesion molecule 1 (ICAM-1) is a transmembrane protein found on the surface of vascular endothelial cells (ECs). Its expression is upregulated at inflammatory sites, allowing for targeted delivery of therapeutics using ICAM-1-binding drug carriers. Engagement of multiple copies of ICAM-1 by these drug carriers induces cell adhesion molecule (CAM)-mediated endocytosis, which results in trafficking of carriers to lysosomes and across ECs. Knowledge about the regulation behind CAM-mediated endocytosis can help improve drug delivery, but questions remain about these regulatory mechanisms. Furthermore, little is known about the natural function of this endocytic pathway. To address these gaps in knowledge, we focused on two natural binding partners of ICAM-1 that potentially elicit CAM-mediated endocytosis: leukocytes (which bind ICAM-1 via β2 integrins) and fibrin polymers (a main component of blood clots which binds ICAM-1 via the γ3 sequence). First, inspired by properties of these natural binding partners, we varied the size and targeting moiety of model drug carriers to determine how these parameters affect CAM-mediated endocytosis. Increasing ICAM-1-targeted carrier size slowed carrier uptake kinetics, reduced carrier trafficking to lysosomes, and increased carrier transport across ECs. Changing targeting moieties from antibodies to peptides decreased particle binding and uptake, lowered trafficking to lysosomes, and increased transport across ECs. Second, using cell culture models of leukocyte/EC interactions, inhibiting regulatory elements of the CAM-mediated pathway disrupted leukocyte sampling, a process crucial to leukocyte crossing of endothelial layers (transmigration). This inhibition also decreased leukocyte transmigration across ECs, specifically through the transcellular route, which occurs through a single EC without disassembly of cell-cell junctions. Third, fibrin meshes, which mimic blood clot fragments/remnants, bound to ECs at ICAM-1-enriched sites and were internalized by the endothelium. Inhibiting the CAM-mediated pathway disrupted this uptake. Following endocytosis, fibrin meshes trafficked to lysosomes where they were degraded. In mouse models, CAM-mediated endocytosis of fibrin meshes appeared to remove fibrin remnants at the endothelial surface, preventing re-initiation of the coagulation cascade. Overall, these results support a link between CAM-mediated endocytosis and leukocyte transmigration as well as uptake of fibrin materials by ECs. Furthermore, these results will guide the future design of ICAM-1-targeted carrier-assisted therapies.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Light and photosensitizer-mediated killing of many pathogens, termed photodynamic antimicrobial chemotherapy (PACT), has been extensively investigated in vitro. A wide range of organisms from the Gram-positive Staphylococcus aureus to the Gram-negative Pseudomonas aeruginosa have been proven to be susceptible to PACT. Multidrug-resistant strains are just as susceptible to this treatment as their naive counterparts. Both enveloped and non-enveloped viruses have demonstrated susceptibility in vitro, in addition to fungi and protozoa. Significantly, however, no clinical treatments based on PACT are currently licensed. This paper provides a comprehensive review of work carried out to date on delivery of photosensitizers for use in PACT, including topical, intranasal and oral/buccal delivery, as well as targeted delivery. We have also reviewed photo-antimicrobial surfaces. It is hoped that, through a rational approach to formulation design and subsequent success in small-scale clinical trials, more widespread use will be made of PACT in the clinic, to the benefit of patients worldwide. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Objectives The Tat peptide has been widely used for the intracellular delivery of macromolecules. The aim of this study was to modify the peptide to enable regulation of cellular uptake through a dependency on activation by proteases present in the local environment.

Methods The native Tat peptide sequence was altered to inhibit the initial interaction of the peptide with the cell membrane through the addition of the consensus sequence for urokinase plasminogen activator (uPA). uPA expression was characterised and semi-quantitatively rated in three cell lines (U251mg, MDA-MB-231 and HeLa). The modified peptide was incubated with both recombinant enzyme and with cells varying in uPA activity. Cellular uptake of the modified Tat peptide line was compared with that of the native peptide and rated according to uPA activity measured in each cell line.

Key findings uPA activity was observed to be high in U251mg and MDA-MB-231 and low in HeLa. In MDA-MB-231 and HeLa, uptake of the modified peptide correlated with the level of uPA expression detected (93 and 52%, respectively). In U251mg, however, the uptake of the modified peptide was much less (19% observed reduction) than the native peptide despite a high level of uPA activity detected.

Conclusions Proteolytic activation represents an interesting strategy for the targeted delivery of macromolecules using peptide-based carriers and holds significant potential for further exploitation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A micellar nanocontainer delivery and release system is designed on the basis of a peptide-polymer conjugate. The hybrid molecules self-assemble into micelles comprising a modified amyloid peptide core surrounded by a PEG corona. The modified amyloid peptide previously studied in our group forms helical ribbons based on a beta-sheet motif and contains beta-amino acids that are excluded from the beta-sheet structure, thus being potentially useful as fibrillization inhibitors. In the model peptide-PEG hybrid system studied, enzymatic degradation using alpha-chymotrypsin leads to selective cleavage close to the PEG-peptide linkage, break up of the micelles, and release of peptides in unassociated form. The release of monomeric peptide is useful because aggregation of the released peptide into beta-sheet amyloid fibrils is not observed. This concept has considerable potential in the targeted delivery of peptides for therapeutic applications.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Introduction: Development of an effective, safe and targeted drug delivery system to fight cancer and other diseases is a prime focus in the area of drug discovery. The emerging field of nanotechnology has revolutionised the way cancer therapy and diagnosis is achieved primarily due to the recent advances in material engineering and drug availability. Further, the recognition of the crucial role played by anti-apoptotic proteins such as survivin, has initiated the development of therapeutics that can target this protein as an attempt to develop alternative cancer therapies. However, a key challenge faced in drug development is the efficient delivery of survivin-targeted molecules to specific areas in the body.Areas covered: This review primarily focuses on the different strategies employing nanotechnology for targeting survivin expressed in human cancers. Different nanomaterials incorporating nucleic molecules or drugs targeted at survivin are discussed and the results obtained from studies are highlighted.Expert opinion: There are extensive studies reporting different treatment regimens for cancer, however, they still result in systemic toxicity, reduced bioavailability and ineffective delivery. Novel approaches involve the use of biocompatible nanomaterials together with gene or drug molecules to target proteins such as survivin, which is overexpressed in cancerous cells. These nanoformulations allow the benefits of protecting easily degradable molecules, allow controlled release, and enhance targeted delivery and effectiveness. Hence, nanotherapy utilizing survivin targeting can be considered to play a key role in the development of personalized nanomedicine for cancer.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Drug targeting is an active area of research and nano-scaled drug delivery systems hold tremendous potential for the treatment of neoplasms. In this study, a novel cyclodextrin (CD)-based nanoparticle drug delivery system has been assembled and characterized for the therapy of folate receptor-positive [FR(+)] cancer. Water-soluble folic acid (FA)-conjugated CD carriers (FACDs) were successfully synthesized and their structures were confirmed by 1D/2D nuclear magnetic resonance (NMR), matrix-assisted laser desorption ionization time-of-flight mass spectrometer (MALDI-TOF-MS), high performance liquid chromatography (HPLC), Fourier transform infrared spectroscopy (FTIR), and circular dichroism. Drug complexes of adamatane (Ada) and cytotoxic doxorubicin (Dox) with FACD were readily obtained by mixed solvent precipitation. The average size of FACD-Ada-Dox was 1.5-2.5 nm. The host-guest association constant Ka was 1,639 M-1 as determined by induced circular dichroism and the hydrophilicity of the FACDs was greatly enhanced compared to unmodified CD. Cellular uptake and FR binding competitive experiments demonstrated an efficient and preferentially targeted delivery of Dox into FR-positive tumor cells and a sustained drug release profile was seen in vitro. The delivery of Dox into FR(+) cancer cells via endocytosis was observed by confocal microscopy and drug uptake of the targeted nanoparticles was 8-fold greater than that of non-targeted drug complexes. Our docking results suggest that FA, FACD and FACD-Ada-Dox could bind human hedgehog interacting protein that contains a FR domain. Mouse cardiomyocytes as well as fibroblast treated with FACD-Ada-Dox had significantly lower levels of reactive oxygen species, with increased content of glutathione and glutathione peroxidase activity, indicating a reduced potential for Dox-induced cardiotoxicity. These results indicate that the targeted drug complex possesses high drug association and sustained drug release properties with good biocompatibility and physiological stability. The novel FA-conjugated β-CD based drug complex might be promising as an anti-tumor treatment for FR(+) cancer.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background: Given the rising rates of obesity in children and adolescents, developing evidence-based weight loss or weight maintenance interventions that can be widely disseminated, well implemented, and are highly scalable is a public health necessity. Such interventions should ensure that adolescents establish healthy weight regulation practices while also reducing eating disorder risk.

Objective:
This study describes an online program, StayingFit, which has two tracks for universal and targeted delivery and was designed to enhance healthy living skills, encourage healthy weight regulation, and improve weight/shape concerns among high school adolescents.

Methods:
Ninth grade students in two high schools in the San Francisco Bay area and in St Louis were invited to participate. Students who were overweight (body mass index [BMI] >85th percentile) were offered the weight management track of StayingFit; students who were normal weight were offered the healthy habits track. The 12-session program included a monitored discussion group and interactive self-monitoring logs. Measures completed pre- and post-intervention included self-report height and weight, used to calculate BMI percentile for age and sex and standardized BMI (zBMI), Youth Risk Behavior Survey (YRBS) nutrition data, the Weight Concerns Scale, and the Center for Epidemiological Studies Depression Scale.

Results: A total of 336 students provided informed consent and were included in the analyses. The racial breakdown of the sample was as follows: 46.7% (157/336) multiracial/other, 31.0% (104/336) Caucasian, 16.7% (56/336) African American, and 5.7% (19/336) did not specify; 43.5% (146/336) of students identified as Hispanic/Latino. BMI percentile and zBMI significantly decreased among students in the weight management track. BMI percentile and zBMI did not significantly change among students in the healthy habits track, demonstrating that these students maintained their weight. Weight/shape concerns significantly decreased among participants in both tracks who had elevated weight/shape concerns at baseline. Fruit and vegetable consumption increased for both tracks. Physical activity increased among participants in the weight management track, while soda consumption and television time decreased.

Conclusions: Results suggest that an Internet-based, universally delivered, targeted intervention may support healthy weight regulation, improve weight/shape concerns among participants with eating disorders risk, and increase physical activity in high school students. Tailored content and interactive features to encourage behavior change may lead to sustainable improvements in adolescent health.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

BACKGROUND: Epithelial cell adhesion molecule (EpCAM) is overexpressed in solid tumors and regarded as a putative cancer stem cell marker. Here, we report that employing EpCAM aptamer (EpApt) and EpCAM siRNA (SiEp) dual approach, for the targeted delivery of siRNA to EpCAM positive cancer cells, efficiently inhibits cancer cell proliferation. RESULTS: Targeted delivery of siRNA using polyethyleneimine is one of the efficient methods for gene delivery, and thus, we developed a novel aptamer-PEI-siRNA nanocomplex for EpCAM targeting. PEI nanocomplex synthesized with EpCAM aptamer (EpApt) and EpCAM siRNA (SiEp) showed 198 nm diameter sized particles by dynamic light scattering, spherical shaped particles, of 151 ± 11 nm size by TEM. The surface charge of the nanoparticles was -30.0 mV using zeta potential measurements. Gel retardation assay confirmed the PEI-EpApt-SiEp nanoparticles formation. The difference in size observed by DLS and TEM could be due to coating of aptamer and siRNA on PEI nanocore. Flow cytometry analysis revealed that PEI-EpApt-SiEp has superior binding to cancer cells compared to EpApt or scramble aptamer (ScrApt) or PEI-ScrApt-SiEp. PEI-EpApt-SiEp downregulated EpCAM and inhibited selectively the cell proliferation of MCF-7 and WERI-Rb1 cells. CONCLUSIONS: The PEI nanocomplex fabricated with EpApt and siEp was able to target EpCAM tumor cells, deliver the siRNA and silence the target gene. This nanocomplex exhibited decreased cell proliferation than the scrambled aptamer loaded nanocomplex in the EpCAM expressing cancer cells and may have potential for EpCAM targeting in vivo.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Alzheimer's disease is a neurological disorder that results in cognitive and behavioral impairment. Conventional treatment strategies, such as acetylcholinesterase inhibitor drugs, often fail due to their poor solubility, lower bioavailability, and ineffective ability to cross the blood-brain barrier. Nanotechnological treatment methods, which involve the design, characterization, production, and application of nanoscale drug delivery systems, have been employed to optimize therapeutics. These nanotechnologies include polymeric nanoparticles, solid lipid nanoparticles, nanostructured lipid carriers, microemulsion, nanoemulsion, and liquid crystals. Each of these are promising tools for the delivery of therapeutic devices to the brain via various routes of administration, particularly the intranasal route. The objective of this study is to present a systematic review of nanotechnology-based drug delivery systems for the treatment of Alzheimer's disease.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Therapeutic RNAs, especially siRNAs, are a promising approach for treating diseases like cancer, neurodegenerative disorders and viral infections. Their application, however, is limited due to a lack of safe and efficient delivery systems. Nanosized carriers with the ability to either complex or entrap RNA species are a promising option. rn rn rnSuch a carrier has to meet a lot of requirements, some of which are even partly contradictive. Understanding and controlling the interplay between the different demands would advance a strategic design at an early stage of therapeutic development. rn rn This work is centered around a systematic evaluation of polyplexes, such carriers that are able to complex siRNA due to electrostatic interactions. Six structurally and chemically diverse candidates, poly-L-lysine brushes, block copolymers, cationic peptides, cationic lipids, nanohydrogels, and manganese oxide particles, were tested in a simultaneous fashion. The assays, mostly based on fluorescently labeled siRNA, ranged from the evaluation of polyplex formation and stability to in vitro parameters like cellular uptake and knockdown capability. The analysis from several perspectives offered insight into the interplay between the specifications of one polyplex. Assessing the different carriers under exactly the same experimental conditions also allowed conclusions about favourable traits and starting points for further optimization. This comparative approach also revealed weaknesses of some of the conventional protocols, which were therefore contrasted with alternative methods. In addition, in vitro knockdown assays were optimized and the impact of fluorescently labeled siRNA on knockdown efficiency was assessed. rn rn rn A second class of carriers, which share the ability to entrap siRNA inside their matrix, are briefly addressed. Nanocapsules, dextran particles and liposomes were assessed for basic features like siRNA encapsulation and knockdown capability. rn rn rn rn In an approach towards targeted delivery of RNA, liposomes were endowed with mitochondriotropic tags. Despite successful functionalization, no colocalization between the liposomal cargo and mitochondria was so far observed, which makes further optimization necessary.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The efficacy of traditional anti-cancer agents is hampered by toxicity to normal tissues, due to the lack of specificity for malignant cells. Recent advances in our understanding of molecular genetics and tumor biology have led to the identification of signaling pathways and their regulators implicated in tumorigenesis and malignant progression. Consequently, novel biological agents were designed which specifically target key regulators of cell survival and proliferation activated in malignant cells and thus are superior to unspecific cytotoxic agents. Antisense molecules comprising conventional single-stranded antisense oligonucleotides (ASO) and small interfering RNA (siRNA) inhibit gene expression on the transcript level. Thus, they specifically target the genetic basis of cancer and are particularly useful for inhibiting the expression of oncogenes the protein products of which are inaccessible to small molecules or inhibitory antibodies. Despite the somewhat disappointing results of recent antisense oncology trials, the identification of new cancer targets and ongoing progress in ASO and siRNA technology together with improvements in tumor targeted delivery have raised new hopes that this fascinating intervention concept will eventually translate into enhanced clinical efficacy.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

It has been suggested that some adult bone marrow cells (BMC) can localize to the lung and develop tissue-specific characteristics including those of pulmonary epithelial cells. Here, we show that the combination of mild airway injury (naphthalene-induced) as a conditioning regimen to direct the site of BMC localization and transtracheal delivery of short-term cultured BMC enhances airway localization and adoption of an epithelial-like phenotype. Confocal analysis of airway and alveolar-localized BMC (fluorescently labeled) with epithelial markers shows expression of the pulmonary epithelial proteins, Clara cell secretory protein, and surfactant protein C. To confirm epithelial gene expression by BMC, we generated transgenic mice expressing green fluorescent protein (GFP) driven by the epithelial-specific cytokeratin-18 promoter and injected BMC from these mice transtracheally into wild-type recipients after naphthalene-induced airway injury. BMC retention in the lung was observed for at least 120 days following cell delivery with increasing GFP transgene expression over time. Some BMC cultured in vitro over time also expressed GFP transgene, suggesting epithelial transdifferentiation of the BMC. The results indicate that targeted delivery of BMC can promote airway regeneration.