916 resultados para sodium chloride


Relevância:

70.00% 70.00%

Publicador:

Resumo:

1. Fast inward currents were elicited in freshly isolated sheep lymphatic smooth muscle cells by depolarization from a holding potential of -80 mV using the whole-cell patch-clamp technique. The currents activated at voltages positive to -40 mV and peaked at 0 mV. 2. When sodium chloride in the bathing solution was replaced isosmotically with choline chloride inward currents were abolished at all potentials. 3. These currents were very sensitive to tetrodotoxin (TTX). Peak current was almost abolished at 1 microM with half-maximal inhibition at 17 nM. 4. Examination of the voltage dependence of steady state inactivation showed that more than 90% of the current was available at the normal resting potential of these cells (-60 mV). 5. The time course of recovery from inactivation was studied using a double-pulse protocol and showed that recovery was complete within 100 ms with a time constant of recovery of 20 ms. 6. Under current clamp, action potentials were elicited by depolarizing current pulses. These had a rapid upstroke and a short duration and could be blocked with 1 microM TTX. 7. Spontaneous contractions of isolated rings of sheep mesenteric lymphatic vessels were abolished or significantly depressed by 1 microM TTX.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The development of a reflective, gold-coated long-period grating-based sensor for the measurement of chloride ions in solution is discussed. The sensor scheme is based around a long-period fiber grating (LPG)-based Michelson interferometer where the sensor was calibrated and evaluated in the laboratory using sodium chloride solutions, over a wide range of concentrations, from 0.01 to 4.00 M. The grating response creates shifts in the spectral characteristic of the interferometer, formed using the LPG and a reflective surface on the distal end of the fiber, due to the change of refracting index of the solution surrounding it. It was found that the sensitivity of the device could be enhanced over that obtained from a bare fiber by coating the LPG-based interferometer with gold nanoparticles and the results of a cross-comparison of performance were obtained and details discussed. The approach will be explored as a basis to create a portable, low-power device, developed with the potential for installation in concrete structures to determine the ingress of chloride ions, operating through monitoring the refractive index change.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Regulation of sodium balance is a critical factor in the maintenance of euvolemia, and dysregulation of renal sodium excretion results in disorders of altered intravascular volume, such as hypertension. The amiloride-sensitive epithelial sodium channel (ENaC) is thought to be the only mechanism for sodium transport in the cortical collecting duct (CCD) of the kidney. However, it has been found that much of the sodium absorption in the CCD is actually amiloride insensitive and sensitive to thiazide diuretics, which also block the Na-Cl cotransporter (NCC) located in the distal convoluted tubule. In this study, we have demonstrated the presence of electroneutral, amiloride-resistant, thiazide-sensitive, transepithelial NaCl absorption in mouse CCDs, which persists even with genetic disruption of ENaC. Furthermore, hydrochlorothiazide (HCTZ) increased excretion of Na+ and Cl- in mice devoid of the thiazide target NCC, suggesting that an additional mechanism might account for this effect. Studies on isolated CCDs suggested that the parallel action of the Na+-driven Cl-/HCO3- exchanger (NDCBE/SLC4A8) and the Na+-independent Cl-/HCO3- exchanger (pendrin/SLC26A4) accounted for the electroneutral thiazide-sensitive sodium transport. Furthermore, genetic ablation of SLC4A8 abolished thiazide-sensitive NaCl transport in the CCD. These studies establish what we believe to be a novel role for NDCBE in mediating substantial Na+ reabsorption in the CCD and suggest a role for this transporter in the regulation of fluid homeostasis in mice.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We investigated the effects of injection into the supraoptic nucleus (SON) of losartanand PD 123319 (nonpeptide AT(1) and AT(2)- angiotensin II [ANG II] receptor antagonists, respectively); d(CH2)(5)-Tyr(Me)-AVP (AVPA; an arginine-vasopressin [AVP] V-1 receptor antagonist), FK 409 (a nitric oxide [NO] donor), and N-W-mtro-(L)-arginine methyl ester ((L)-NAME; an NO synthase inhibitor) oil water intake, sodium chloride 3% (NaCl) intake and arterial blood pressure induced by injection of ANG 11 into the lateral septal area (LSA). Mate Holtzman rats (250-300 g) were implanted with cannulae into SON and LSA unilaterally. The drugs were injected in 0.5 mul over 30-60 s. Controls were injected with a similar volume of 0.15 M NaCl. ANG II was injected at a dose of 10 pmol. ANG II antagonists and AVPA were injected at doses of 80 nmol. FK 409 and (L)-NAME were injected at doses of 20 and 40 mug, respectively. Water and NaCl intake was measured over a 2-h period. Prior administration of losartan into the SON decreased water and NaCl intake induced by injection of ANG II. While there was a decrease in water intake, ANG II-induced NaCl intake was significantly increased following injection of AVPA. FK 409 injection decreased water intake and sodium intake induced by ANG II. L-NAME alone increased water and sodium intake and induced a pressor effect. (L)-NAME-potentiated water and sodium intake induced by ANG II. PD 123319 produced no changes in water or sodium intake induced by ANG II. The prior administration of losartan or AVPA decreased mean arterial pressure (MAP) induced by ANG II. PD 123319 decreased the pressor effect of ANG II to a lesser degree than losartan. FK 409 decreased the pressor effect of ANG II while (L)-NAME potentiated it. These results suggest that both ANG II AT, and AVP V, receptors and NO within the SON may be involved in water intake, NaCl intake and the pressor response were induced by activation of ANG II receptors within the LSA. These results do not support the involvement of LSA AT(2) receptors in the mediation of water and NaCl intake responses induced by ANG II, but influence the pressor response. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Increased fighting is an effect of desynchronized sleep deprivation (DSD) in rats, and recently this behavior has been suggested to be spontaneous panic and equivalent to panic disorder. In the present study we tested this hypothesis by evaluating the effect of sodium lactate on this aggressiveness, because this substance is recognized to induce spontaneous panic attacks in patients. A total of 186 male albino Wistar rats, 250-350 g, 90-120 days of age, were submitted to DSD (multiple platform method) for 0, 4, or 5 days. At the end of the deprivation period the rats were divided into subgroups respectively injected intraperitoneally with 1.86, 2.98 and 3.72 g/kg of 1 M sodium lactate, or 1.86 and 3.72 g/kg of 2 M sodium lactate. The control animals were submitted to the same procedures but received equivalent injections of sodium chloride. Regardless of DSD time, sleep-deprived animals that received sodium lactate presented a significantly higher mean number of fights (0.13 ± 0.02 fights/min) and a longer mean time spent in confrontation (2.43 ± 0.66 s/min) than the controls (0.01 ± 0.006 fights/min and 0.12 ± 0.07 s/min, respectively; P<0.01, Student t-test). For the sodium lactate group, concentration of the solution and time of deprivation increased the number of fights, with the mean number of fights and mean duration of fighting episodes being greater with the 2.98 g/kg dose using 1 M lactate concentration. These results support the hypothesis that fighting induced by DSD is probably a spontaneous panic manifestation. However, additional investigations are necessary in order to accept this as a promising animal model for studies on panic disorder.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Bombesin (BN) elicits in the rat important behavioural modifications, including inhibition of food and of water intake. Recently, it has been observed that the peptide also inhibits the intake of sodium chloride. To stare whether BN possesses a selective antinatriorexic effect or it elicits only an aspecific depression of ingestive behaviour, we studied the effects of this peptide on the intake of sodium, water or sucrose of Wistar rats after injections into the fourth brain ventricle or into selected brain areas involved in the control of sodium intake, containing BN-like peptides and/or their precursors or specific receptors. We observed that: a) BN (100-200 ng/rat) injected into the fourth brain ventricle inhibits not only the intake of 2% NaCl of sodium depleted rats but also that of water and of 5% sucrose; b) BN (5-50 ng/rat) administered into the nucleus of the solitary tract and the medial amygdala does not influence the intake of these fluids and c) BN (5-50 ng/rat) injected into the paraventricular nucleus does not influence the intake of water and 5% sucrose but potently inhibits that of 2% NaCl. We concluded that the inhibitory effect elicited on salt intake by intracranial administration of BN is selective for this behaviour and is not the expression of an aspecific depression of ingestive behaviour. (C) 1998 Elsevier B.V.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The subfornical organ (SFO) and the lateral hypothalamus (LH) have been shown to be important for the central action of angiotensin II (ANG II) on water and salt regulation. Several anatomical findings have demonstrated neural connections between the SFO and the LH. The present experiments were conducted to investigate the role of the α-adrenergic antagonists and agonists injected into the LH on the water and salt intake elicited by injections of ANG II into the SFO. Prazosin (an α1-adrenergic antagonist) injected into the LH increased the salt ingestion, whereas yohimbine (an α2-adrenergic antagonist) and propranolol (a β-adrenergic antagonist) antagonized the salt ingestion induced by administration of ANG II into the SFO. Previous administration of clonidine (an α2-adrenergic agonist) or noradrenaline into the LH increased, whereas pretreatment with phenylephrine decreased the sodium intake induced by injection of ANG II into the SFO. Previous treatment with prazosin and propranolol reduced the water intake induced by ANG II. Phenylephrine increased the dipsogenic responses produced by ANG II, whereas previous treatment with clonidine injected into the LH reduced the water intake induced by ANG II administration into the SFO. The LH involvement with SFO on the excitatory and inhibitory mechanisms related to water and sodium intake is suggested.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Aim. Diclofenac sodium is a non-steroidal anti-inflammatory drug commonly used to attenuate painful inflammatory reactions in surgery. However, it may delay healing in the skin and gastrointestinal tract. The aim of this study was to evaluate the influence of Diclofenac in vascular healing. Methods. Ninety rabbits had their carotid arteries sectioned and reconstructed by end-to-end anastomosis with interrupted sutures. The animals were randomly allocated into 3 groups of 30 each and treated by intramuscular route with saline (control), 5 mg/kg/day of diclofenac sodium (DS-5), and 10 mg/kg/day of diclofenac sodium (DS-10). Treatment began on the day of surgery and lasted 4 days. Angiography, biomechanical properties (failure load, failure elongation, yield point, yield point elongation, and stiffness were obtained from the load/elongation curve), macroscopic and histological examinations (hematoxylin-eosin, Masson, Calleja, Picrossirius-red), and scanning electron microscopy were studied in both arteries on the 3rd and 15th postoperative days. Results. No significant differences in biomechanical properties were observed either in the 3 groups or the experimental times. The carotid artery healing process was similar in the 3 groups. Conclusion. Diclofenac sodium did not cause alterations nor delayed carotid artery healing.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

As several structures of the central nervous system are involved in the control of hydromineral and cardiovascular balance we investigated whether the natriorhexigenic and pressor response induced by the injection of ANG II into the 3rd V could be mediated by vasopressinergic and nitrergic system. Male Holtzman rats weighing 200-250 g with cannulae implanted into the 3rd V were used. The drugs were injected in 0.5 μL over 30-60 sec. Controls were injected with a similar volume of 0.15 M NaCl. ANGII increased the water intake vs control. AVPA injected into 3rd V prior to ANGII decreased the dipsogenic effect of ANGII. L-arginine also decreased the water intake induced by ANGII. AVPA plus L-arginine inhibit the water intake induced by ANGII. 7NIT injected prior to ANGII potentiated the dipsogenic effect of ANGII. Pre-treatment with ANGII increased the sodium ingestion vs control. AVPA decreased the ANGII effect in sodium intake. L-arginine also decreased the natriorhexigenic effect of ANGII. The combination of L-arginine and AVPA inhibit the sodium intake induced by ANGII. 7NIT injected prior to ANGII potentiated the sodium intake induced by ANGII. ANGII induced an increase in Mean Arterial Pressure (MAP) vs control. AVPA and L-arginine induced a decreased in the pressor effect of ANGII. The combination of L-arginine and AVPA inhibit the pressor effect of ANGII. 7NIT injected prior to ANGII into 3rd V potentiated the pressor effect of ANGII. These data suggest that arginine vasopressin V 1 receptors and Nitric Oxide (NO) within the circumventricular structures may be involved in sodium intake and pressor response induced by the activation of ANGII receptors within the circumventricular neurons. These studies revealed the involvement of sodium appetite by utilizing the angiotensinergic, vasopressinergic and nitrergic system in the central regulation of blood pressure. © 2006 Asian Network for Scientific Information.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We study the effects of angiotensin receptors antagonists, arginine vasopressin receptor antagonist, L-arginine and L-NAME, injected into supraoptic nucleus of the hypothalamus (SON) on sodium intake induced by the injection of angiotensin II (ANGII). Holtzman rats weighing 200-250 g with canulae implanted into the SON were used. The drugs were injected in 0.5 μL over 30-60 sec. Sodium intake after injection of saline SAL+SAL 0.15 M NaCl was 0.10±00.1 mL 2 h -1; SAL+ANGII injected into SON increased sodium intake. Losartan injected prior to ANGII into SON decreased sodium intake induced by ANGII. PD123319 injected prior to ANGII produced no changes in sodium intake induced by ANGII. AVPA receptor V 1 antagonist injected prior to ANGII reduced sodium intake with a less intensity than losartan. L-arginine injected prior to ANGII decreases sodium intake at a same intensity than losartan. L-NAME injected prior to ANGII potentiated sodium intake induced by ANGII. Losartan injected simultaneously with L-arginine prior to ANGII blocked the natriorexigenic effect of ANGII. These results confirm the importance of SON in the control of sodium intake. Also suggest that both AT 1 and arginine vasopressin V 1 receptors interact with nitrergic pathways within the SON influencing the sodium metabolism by changing sodium appetite induced by ANGII. © 2007 Asian Network for Scientific Information.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Aldosterone acting on the brain stimulates sodium appetite and sympathetic activity by mechanisms that are still not completely clear. In the present study, we investigated the effects of chronic infusion of aldosterone and acute injection of the mineralocorticoid receptor (MR) antagonist RU 28318 into the fourth ventricle (4th V) on sodium appetite. Male Wistar rats (280-350 g) with a stainless-steel cannula in either the 4th V or lateral ventricle (LV) were used. Daily intake of 0.3 M NaCl increased to 46 ± 15 and 130 ± 6 ml/24 h after 6 days of infusion of 10 and 100 ng/h of aldosterone into the 4th V (intake with vehicle infusion: 2 ± 1 ml/24 h). Water intake fell slightly and not consistently, and food intake was not affected by aldosterone. Sodium appetite induced by diuretic (furosemide) combined with 24 h of a low-sodium diet fell from 12 ± 1.7 ml/2 h to 5.6 ± 0.8 ml/2 h after injection of the MR antagonist RU 28318 (100 ng/2 μl) into the 4th V. RU 28318 also reduced the intake of 0.3 M NaCl induced by 9 days of a low-sodium diet from 9.5 ± 2.6 ml/2 h to 1.2 ± 0.6 ml/2 h. Infusion of 100 or 500 ng/h of aldosterone into the LV did not affect daily intake of 0.3 M NaCl. The results are functional evidence that aldosterone acting on MR in the hindbrain activates a powerful mechanism involved in the control of sodium appetite. © 2013 the American Physiological Society.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Bilateral injections of the GABAA agonist muscimol into the lateral parabrachial nucleus (LPBN) disrupt satiety and induce strong ingestion of water and 0.3M NaCl in fluid-replete rats by mechanisms not completely clear. In the present study, we investigated the effects of the blockade of central muscarinic cholinergic receptors with atropine injected intracerebroventricularly (i.c.v.) on 0.3M NaCl and water intake induced by muscimol injections into the LPBN in fluid-replete rats. Male Holtzman rats with stainless steel cannulas implanted bilaterally into the LPBN and unilaterally into the lateral ventricle (LV) were used. Bilateral injections of muscimol (0.5nmol/0.2μL) into the LPBN induced 0.3M NaCl (32.2±9.9mL/4h, vs. saline: 0.4±0.2mL/4h) and water intake (11.4±4.4mL/4h, vs. saline: 0.8±0.4mL/4h) in fluid-replete rats previously treated with i.c.v. injection of saline. The previous i.c.v. injection of atropine (20nmol/1μL) reduced the effects of LPBN-muscimol on 0.3M NaCl (13.5±5.0mL/4h) and water intake (2.9±1.6mL/4h). The i.c.v. injection of atropine did not affect 0.3M NaCl (26.8±6.2mL/2h, vs. saline i.c.v.: 36.5±9.8mL/2h) or water intake (14.4±2.5mL/2h, vs. saline i.c.v.: 15.6±4.8mL/2h) in rats treated with furosemide+captopril subcutaneously combined with bilateral injections of moxonidine (α2-adrenoceptor/imidazoline agonist, 0.5nmol/0.2μL) into the LPBN, suggesting that the effect of atropine was not due to non-specific inhibition of ingestive behaviors. The results show that active central cholinergic mechanisms are necessary for the hypertonic NaCl and water intake induced by the blockade of the inhibitory mechanisms with injections of muscimol into the LPBN in fluid-replete rats. The suggestion is that in fluid-replete rats the action of LPBN mechanisms inhibits facilitatory signals produced by the activity of central cholinergic mechanisms to maintain satiety. © 2012 Elsevier B.V.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A highly concentrated aqueous saline-containing solution of phenol, 2,4-dichlorophenoxyacetic acid (2,4-D) and 2,4-dichlorophenol (2.4-DCP) was treated by the photo-Fenton process in a system composed of an annular reactor with a quartz immersion well and a medium-pressure mercury lamp (450 W). The study was conducted under special conditions to minimize the costs of acidification and neutralization, which are usual steps in this type of process. Photochemical reactions were carried out to investigate the influence of some process variables such as the initial concentration of Fe2+ ([Fe2+](0)) from 1.0 up to 2.5 mM, the rate in mmol of H2O2 fed into the system (F-H2O2,F-in) from 3.67 up to 7.33 mmol of H2O2/min during 120 min of reaction time, and the initial pH (pH(0)) from 3.0 up to 9.0 in the presence and absence of NaCl (60.0 g/L). Although the optimum pH for the photo-Fenton process is about 3.0, this particular system performed well in experimental conditions starting at alkaline and neutral pH. The results obtained here are promising for industrial applications, particularly in view of the high concentration of chloride, a known hydroxyl radical scavenger and the main oxidant present in photo-Fenton processes. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Metakaolin (MK), a calcined clay, was included as a partial cement replacement material, at up to 20% by weight of binder, in cement pastes and concrete, and its influence on the resistance to chloride ingress investigated. Reductions in effective chloride diffusion coefficients through hardened cement paste were obtained for binary blends and by combining OPC, MK and a second cement replacement material of pulverised fuel ash or ground granulated blast furnace slag. Steady state oxygen diffusion measurements through hardened cement pastes measured using an electrochemical cell showed that the interaction between charged species and the pore surfaces is a major factor in determining chloride diffusion rate. Rheology of the binder, particularly at high MK replacement levels, was found to have a dramatic influence on the diffusion performance of cement pastes. It was concluded that plasticising admixtures are essential for adequate dispersion of MK in cement pastes. Chloride concentration profile analysis of the concrete cylinders, exposed to sodium chloride solution for one year, was employed to obtain apparent chloride diffusion coefficients for concrete specimens. MK was found to reduce the depth of chloride penetration into concrete when compared with that of unblended mixes. Corrosion rate and corrosion potential measurements were taken on steel bars embedded in concrete exposed to a saline environment under conditions of cyclic wetting and drying. The initiation time for corrosion was found to be significantly longer for MK blended mixes than for plain OPC systems. The aggregate-paste interfacial zone of MK blended systems was investigated by steady state diffusion of chloride ions through mortar containing glass beads as model aggregate. For the model aggregate specimens tested the work confirmed the hypothesis that properties of the bulk paste are the controlling factors in ionic diffusion through mortar.