897 resultados para cartilage


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: To quantify the levels of proteoglycan 4 (PRG4) expression by subpopulations of chondrocytes from superficial, middle, and deep layers of normal bovine calf cartilage in various culture systems. Methods: Bovine calf articular cartilage discs or isolated cells were used in I of 3 systems of chondrocyte culture: explant, monolayer, or transplant, for 1-9 days. PRG4 expression was quantified by enzyme-linked immunosorbent assay of spent medium and localized by immunohistochemistry at the articular surface and within chondrocytes in explants and cultured cells. Results: Superficial chondrocytes secreted much more PRG4 than did middle and deep chondrocytes in all cultures. The pattern of PRG4 secretion into superficial culture medium varied with the duration of culture, decreasing with time in explant culture (from similar to25 mug/cm(2)/day on days 0-1 to similar to3 mug/cm(2)/day on days 5-9), while increasing in monolayer culture (from similar to1 pg/cell/day on days 0-1 to similar to7 pg/cell/day on days 7-9) and tending to increase in transplant culture (reaching similar to2 mug/cm(2)/day by days 7-9). In all of the culture systems, inclusion of ascorbic acid stimulated PRG4 secretion, and the source of PRG4 was immunolocalized to superficial cells. Conclusion: The results described here indicate that the phenotype of PRG4 secretion by chondrocytes in culture is generally maintained, in that PRG4 is expressed to a much greater degree by chondrocytes from the superficial zone than by those from the middle and deep zones. The marked up-regulation of PRG4 synthesis by ascorbic acid may have implications for cartilage homeostasis and prevention of osteoarthritic disease. Transplanting specialized cells that secrete PRG4 to a surface may impart functional lubrication and be generally applicable to many tissues in the body.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To determine the effects of the articular cartilage surface, as well as synovial fluid (SF) and its components, specifically proteoglycan 4 (PRG4) and hyaluronic acid (HA), on integrative cartilage repair in vitro. Methods. Blocks of calf articular cartilage were harvested, some with the articular surface intact and others without. Some of the latter types of blocks were pretreated with trypsin, and then with bovine serum albumin, SF, PRG4, or HA. Immunolocalization of PRG4 on cartilage surfaces was performed after treatment. Pairs of similarly treated cartilage blocks were incubated in partial apposition for 2 weeks in medium supplemented with serum and 3 H-proline. Following culture, mechanical integration between apposed cartilage blocks was assessed by measuring adhesive strength, and protein biosynthesis and deposition were determined by incorporated 3 H-proline. Results. Samples with articular surfaces in apposition exhibited little integrative repair compared with samples with cut surfaces in apposition. PRG4 was immunolocalized at the articular cartilage surface, but not in deeper, cut surfaces (without treatment). Cartilage samples treated with trypsin and then with SF or PRG4 exhibited an inhibition of integrative repair and positive immunostaining for PRG4 at treated surfaces compared with normal cut cartilage samples, while samples treated with HA exhibited neither inhibited integrative repair nor PRG4 at the tissue surfaces. Deposition of newly synthesized protein was relatively similar under conditions in which integration differed significantly. Conclusion. These results support the concept that PRG4 in SF, which normally contributes to cartilage lubrication, can inhibit integrative cartilage repair. This has the desirable effect of preventing fusion of apposing surfaces of articulating cartilage, but has the undesirable effect of inhibiting integrative repair.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Articular cartilage provides a low-friction surface for joint articulation, with boundary lubrication facilitated by proteoglycan 4 (PRG4), which is secreted by chondrocytes of the superficial zone. Chondrocytes from different zones are phenotypically distinct, and their phenotypes in vitro are influenced by the system in which they are cultured. We hypothesized that culturing cells from the superficial (S) zone in two-dimensional monolayer or three-dimensional alginate would affect their synthesis of PRG4, and that subsequently seeding them atop alginate-recovered cells from the middle/ deep (M) zone in various proportions would result in tissue-engineered constructs with varying levels of PRG4 secretion and matrix accumulation. During monolayer culture, S cells retained their PRG4-secreting phenotype, whereas in alginate culture the percentage of cells secreting PRG4 decreased with time. Constructs formed with increasing percentages of S cells decreased in thickness and matrix accumulation, depending on both the culture conditions before construct formation and the S-cell density. PRG4-secreting cells were localized to the S-cell seeded construct surface, with secretion rates of 0.1–4 pg/cell/day or 0.1–1 pg/cell/day for constructs formed with monolayer-recovered or alginate-recovered S cells, respectively. Tailoring secretion of PRG4 in cartilage constructs may be useful for enhancing low-friction properties at the articular surface, while maintaining other surfaces free of PRG4 for enhancing integration with surrounding tissues.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adult articular cartilage has depth-dependent mechanical and biochemical properties which contribute to zone-specific functions. The compressive moduli of immature cartilage and tissue-engineered cartilage are known to be lower than those of adult cartilage. The objective of this study was to determine if such tissues exhibit depth-dependent compressive properties, and how these depth-varying properties were correlated with cell and matrix composition of the tissue. The compressive moduli of fetal and newborn bovine articular cartilage increased with depth (p < 0.05) by a factor of 4-5 from the top 0.1 mm (28 +/- 13 kPa, 141 +/- 10 kPa, respectively) to 1 mm deep into the tissue. Likewise, the glycosaminoglycan and collagen content increased with depth (both p < 0.001), and correlated with the modulus (both p < 0.01). In contrast, tissue-engineered cartilage formed by either layering or mixing cells from the superficial and middle zone of articular cartilage exhibited similarly soft regions at both construct surfaces, as exemplified by large equilibrium strains. The properties of immature cartilage may provide a template for developing tissue-engineered cartilage which aims to repair cartilage defects by recapitulating the natural development and growth processes. These results suggest that while depth-dependent properties may be important to engineer into cartilage constructs, issues other than cell heterogeneity must be addressed to generate such tissues. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The functional properties of cartilaginous tissues are determined predominantly by the content, distribution, and organization of proteoglycan and collagen in the extracellular matrix. Extracellular matrix accumulates in tissue-engineered cartilage constructs by metabolism and transport of matrix molecules, processes that are modulated by physical and chemical factors. Constructs incubated under free-swelling conditions with freely permeable or highly permeable membranes exhibit symmetric surface regions of soft tissue. The variation in tissue properties with depth from the surfaces suggests the hypothesis that the transport processes mediated by the boundary conditions govern the distribution of proteoglycan in such constructs. A continuum model (DiMicco and Sah in Transport Porus Med 50:57-73, 2003) was extended to test the effects of membrane permeability and perfusion on proteoglycan accumulation in tissue-engineered cartilage. The concentrations of soluble, bound, and degraded proteoglycan were analyzed as functions of time, space, and non-dimensional parameters for several experimental configurations. The results of the model suggest that the boundary condition at the membrane surface and the rate of perfusion, described by non-dimensional parameters, are important determinants of the pattern of proteoglycan accumulation. With perfusion, the proteoglycan profile is skewed, and decreases or increases in magnitude depending on the level of flow-based stimulation. Utilization of a semi-permeable membrane with or without unidirectional flow may lead to tissues with depth-increasing proteoglycan content, resembling native articular cartilage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Articular cartilage is covered by a microscopic structure known as surface amorphous layer. This surface structure is often the first victim of attack during cartilage degeneration, thereby resulting in a gross impairment in cartilage function such as lubrication and load bearing. We hypothesize that incubation of degraded cartilage in solutions of different species of synthetic surface active phospholipids (saturated and unsaturated species) can remodel this lost surface structure. To test this hypothesis, the structural configuration of the surface of articular cartilage was studied and characterised with the lipid filled surface amorphous layer intact using the AFM. The results were then compared with those obtained following a systematic removal (delipidization) and replacement (relipidization) of this layer. Our results show that the unsaturated surfactant partially restored the lost surface amorphous layer while the saturated surfactant specie settled on the surface due to its poor solubility in aqueous solution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reviews the current status of the application of optical non-destructive methods, particularly infrared (IR) and near infrared (NIR), in the evaluation of the physiological integrity of articular cartilage. It is concluded that a significant amount of work is still required in order to achieve specificity and clinical applicability of these methods in the assessment and treatment of dysfunctional articular joints.