913 resultados para carbohydrate
Resumo:
The thermodynamics of the binding of derivatives of galactose and lactose to a 14 kDa beta-galactoside-binding lectin (L-14) from sheep spleen has been studied in 10 nM phosphate/150 mM NaCl/10 mM beta-mercaptoethanol buffer, pH 7.4, and in the temperature range 285-300 K using titration calorimetry. The single-site binding constants of various sugars for the lectin were in the following order: N-acetyl-lactosamine thiodigalactoside > 4-methylumbelliferyl lactoside > lactose > 4-methylumbelliferyl alpha-D-galactoside > methyl-alpha-galactose > methyl-beta-galactose. Reactions were essentially enthalpically driven with the binding enthalpies ranging from -53.8 kJ/mol for thiodigalactoside at 301 K to -2.2 kJ/mol for galactose at 300 K, indicating that hydrogen-bonding and van der Waals interactions provide the major stabilization for these reactions. However, the binding of 4-methylumbelliferyl-alpha-D-galactose displays relatively favourable entropic contributions, indicating the existence of a non-polar site adjacent to the galactose-binding subsite. From the increments in the enthalpies for the binding of lactose, N-acetyl-lactosamine and thiodigalactoside relative to methyl-beta-galactose, the contribution of glucose binding in the subsite adjacent to that for galactose shows that glucose makes a major contribution to the stability of L-14 disaccharide complexes. Observation of enthalpy-entropy compensation for the recognition of saccharides such as lactose by L-14 and the absence of it for monosaccharides such as galactose, together with the lack of appreciable changes in the heat capacity (delta Cp), indicate that reorganization of water plays an important role in these reactions.
Carbohydrate binding specificity of the B-cell maturation mitogen from Artocarpus integrifolia seeds
Resumo:
Artocarpin, a mannose-specific lectin, is a homotetrameric protein (M(r) 65,000) devoid of covalently attached carbohydrates and consists of four isolectins with pI in the range 5-6.5. Investigations of its carbohydrate binding specificity reveal that among monosaccharides, mannose is preferred over glucose. Among mannooligosaccharides, mannotriose (Man alpha 1-3[Man alpha 1-6]Man) and mannopentaose are the strongest ligands followed by Man alpha 1-3Man. Extension of these ligands by GlcNAc at the reducing ends of mannooligosaccharides tested remarkably improves their inhibitory potencies, while substitution of both the alpha 1-3 and alpha 1-6 mannosyl residues of mannotriose and the core pentasaccharide of N-linked glycans (Man alpha 1-3[Man alpha 1-6]Man beta 1-4GlcNAc beta 1-4GlcNAc) by GlcNAc or N-acetyllactosamine in beta 1-2 linkage diminishes their inhibitory potencies. Sialylated oligosaccharides are non-inhibitory. Moreover, the substitution of either alpha 1-3 or alpha 1-6 linked mannosyl residues of M5Gn or both by mannose in alpha 1-2 linkage leads to a considerable reduction of their inhibitory power. Addition of a xylose residue in beta 1-2 linkage to the core pentasaccharide improves the inhibitory activity. Considering the fact that artocarpin has the strongest affinity for the xylose containing hepasaccharide from horseradish peroxidase, which differs significantly from all the mannose/glucose-specific lectins, it should prove a useful tool for the isolation and characterization of glycoproteins displaying such structure.
Resumo:
Enteropathogenic Escherichia coli strains of diffused adherent (DA) and localised adherent (LA) phenotypes were tested for their ability to bind to glycolipids. DA strains did not bind to the glycolipids tested, while LA strains bound to asialo GM1, asialo GM2, globoside and lacto-N-neotetraose in decreasing order of avidity. The minimum common sequence among the four glycolipids could be delineated as GalNac β 1–4 Gal as the binding epitope with GalNac β 1–3 Gal and GlcNac β 1–3 Gal serving as relatively weaker binders. The binding was not inhibited by a variety of free oligosaccharides or by the neoglycoproteins tested. Adhesion-negative mutants of an enteropathogenic LA strain showed a markedly reduced binding to asialo GM1 indicating that the recognition of GalNac β 1–4 Gal was correlated with the ability to adhere to HeLa cells. Thus recognition and binding to glycolipids could play an important role in colonisation through adherence to intestinal surfaces.
Resumo:
The carbohydrate binding specificity of the basic lectin from winged bean (Psophocarpus tetragonolobus) was investigated by quantitative precipitin analysis using blood group A, B, H, Le and I substances and by precipitation inhibition with various mono- and oligosaccharides. The lectin precipitated best with A1 substances and moderately with B and A2 substances, but not with H or Le substances. Inhibition assays of lectin-blood group A1 precipitation demonstration that A substance-derived oligosaccharides having the common structure: d-Ga1NAcα(1 → 3)d-Gal-(β1 → Image ) to a d-Glc, were the best inhibitors and about 8 and 4 times more active than d-Ga1NAc and d-Ga1NAcα(1 → 3)d-Ga1, respectively. A difucosyl A-specific oligosaccharide (A-penta), a monofucosyl (A-tetra) and a non-fucosyl containing (A5 II) oligosaccharide, d-Ga1NAcα(1 → 3)d-Ga1β(1 → 3)d-G1cNAc, had almost the same reactivity, suggesting that the fucose linked to the sub-terminal d-Ga1 or to the third sugar, d-GlcNAc, from the non-reducing end made no contribution to the carbohydrate binding. Although a terminal non-reducing d-Ga1NAc or d-Ga1 residue was indispensible for binding, the lectin bound not only to these terminal non-reducing galactopyranosyl residues, but also showed increased binding to oligosaccharides in which it was bonded to a sub-terminal d-Ga1 joined to a d-GlcNAc residue, as in blood group A or B substances. This defines the site, thus far, as complementary to a disaccharide plus the β linkage to the third sugar (d-Glc or d-GlcNAc) from the non-reducing end. The role of the β(1 → 3) or β(1 → 4) linkage of the sub-terminal non-reducing d-Gal to the d-GlcNAc requires further study.
Resumo:
Candida albicans is a commensal opportunistic pathogen, which can cause superficial infections as well as systemic infections in immuocompromised hosts. Among nosocomial fungal infections, infections by C. albicans are associated with highest mortality rates even though incidence of infections by other related species is on the rise world over. Since C. albicans and other Candida species differ in their susceptibility to antifungal drug treatment, it is crucial to accurately identify the species for effective drug treatment. Most diagnostic tests that differentiate between C. albicans and other Candida species are time consuming, as they necessarily involve laboratory culturing. Others, which employ highly sensitive PCR based technologies often, yield false positives which is equally dangerous since that leads to unnecessary antifungal treatment. This is the first report of phage display technology based identification of short peptide sequences that can distinguish C. albicans from other closely related species. The peptides also show high degree of specificity towards its different morphological forms. Using fluorescence microscopy, we show that the peptides bind on the surface of these cells and obtained clones that could even specifically bind to only specific regions of cells indicating restricted distribution of the epitopes. What was peculiar and interesting was that the epitopes were carbohydrate in nature. This gives insight into the complexity of the carbohydrate composition of fungal cell walls. In an ELISA format these peptides allow specific detection of relatively small numbers of C. albicans cells. Hence, if used in combination, such a test could help accurate diagnosis and allow physicians to initiate appropriate drug therapy on time.
Resumo:
The binding affinity of the oligosaccharide moiety of a neutral glycosphingolipid, asialoGM1, towards Ricinus communis agglutinin (RCAI) was determined for the first time by fluorescence resonance energy transfer (RET). The asialoGM1 was incorporated into a phospholipid (DMPC) vesicle doped with dansylated DPPE and then titrated with an increasing amount of the galactose specific RCAI. The efficiency of RET was determined by a saturable increase in the quenching of 'donor' fluorescence, i.e. the 'trp' residue of RCAI, due to the energy transfer from the 'acceptor' dansyl group on the surface of the vesicle. The apparent binding constant was found to be in the range of 10(5)-10(6) M-1 at 27 degrees C.
Resumo:
The three crystal structures reported here provide details of the interactions of mannose and the mannosyl-alpha-1,3-mannose component of a pentamannose with banana lectin and evidence for the binding of glucosyl-alpha-1,2-glucose to the lectin. The known structures involving the lectin include a complex with glucosyl-beta-1,3-glucose. Modeling studies on the three disaccharide complexes with the reducing end and the nonreducing end at the primary binding site are also provided here. The results of the Xray and modeling studies show that the disaccharides with an alpha-1,3 linkage prefer to have the nonreducing end at the primary binding site, whereas the reducing end is preferred at the site when the linkage is beta-1,3 in mannose/glucose-specific beta-prism I fold lectins. In the corresponding galactose-specific lectins, however, alpha-1,3-linked disaccharides cannot bind the lectin with the nonreducing end at the primary binding site on account of steric clashes with an aromatic residue that occurs only when the lectin is galactose-specific. Molecular dynamics simulations based on the known structures involving banana lectin enrich the information on lectin-carbohydrate interactions obtained from crystal structures. They demonstrate that conformational selection as well as induced fit operate when carbohydrates bind to banana lectin.
Resumo:
The carbohydrate based mesogens have gained an importance in the field of liquid crystals, primarily through the amphiphilic nature of many sugar derivatives. A constitutional requirement for the amphiphilic mesogen is that the molecule consists of distinct regions within the molecule that separately would have different responses to changes in thermal energies and/or solvations. Such molecules can be synthesized by linking one or more alkyl chains of appropriate length to both cyclic and acyclic sugars. A driving force for the mesophase formation in these molecules is the phase segregation, leading to aggregates, possessing distinct lyophilic and hydrophilic regions. In this review, we discuss the thermotropic behavior of the carbohydrate amphiphiles. We discuss the relationship between constitutions, configurations, functionalities of the sugar component and the length of the hydrophobic chains necessary to form the various types of thermotropic phases. The influence of the linking group between the hydrophilic sugar head groups and lyophilic alkyl chains on the transition temperatures and mesophase stabilities are also presented.
Resumo:
Sugar-based amphiphiles, consisting of two sugar head groups and an alkylene chain within the molecules, are synthesized and their aggregation and mesomorphic properties are evaluated. The hydrophilic sugar head groups, constituted with β-D-glucopyranoside units, and the lyophilic alkylene units, are coupled to a glycerol backbone to afford the ‘double-headed’ sugar amphiphiles. Aggregation studies in aqueous solutions provided their critical micellar concentrations and the aggregation numbers. Mesophase characterizations by polarizing optical microscopy and differential scanning calorimetry (DSC) revealed the phase-transition behaviour of these new ‘double-headed’ glycolipids.
Resumo:
This tutorial review describes multivalent carbohydrate-protein and carbohydrate-carbohydrate interaction studies that utilize self-assembled aggregates of thermodynamically stable liposomes and micelles. Strategies to prepare multivalent glycoliposomes and micelles include: (i) insertion of synthetic glycolipids into matrix lipids; (ii) preparation of glycolipids that aggregate to liposomes and micelles and (iii) modification of the hydrophilic surfaces with desired sugars. Several design strategies have been developed in order to obtain constituent glycolipids, having multivalent sugar moieties and their subsequent interactions with proteins were assessed in relation to the type of linkers that connect the hydrophilic and lipophilic segments. Lipophilic segments other than alkyl chains have also been developed. Polymer based glycoliposomes and micelles form an emphasis. Further, glycoliposomes facilitate studies of carbohydrate-carbohydrate interactions. An overview of the various types of glycoliposomes and micelles used to study carbohydrate-protein and carbohydrate-carbohydrate recognition phenomena is presented.
Resumo:
Oxovanadium(IV) complexes VO(aip)(L)](ClO4)(2) (L = phtpy, 1; stpy, 2) and VO(pyip)(L)](ClO4)(2) (L = phtpy, 3; stpy, 4), where aip is 2-(9-anthryl)-1H-imidazo4,5-f]1,10] phenanthroline, pyip is 2-(1-pyrenyl)-1Himidazo4,5-f]1,10] phenanthroline, phtpy is (4'-phenyl)-2,2': 6',2 `'-terpyridine and stpy is (2,2': 6', 2 `'-terpyridin-4'-oxy) ethyl-beta-D-glucopyranoside, were prepared, characterized and their DNA binding and photocleavage activity, cellular uptake and photocytotoxicity in visible light were studied. The complexes are avid binders to calf thymus DNA (K-b similar to 10(5) mol(-1)). They efficiently cleave pUC19 DNA in red light of 705 nm via the formation of HO center dot species. The glucose appended complexes 2 and 4 showed higher photocytotoxicity in HeLa and Hep G2 cells over the normal HEK 293T cells. No such preference was observed for the phtpy complexes 1 and 3. No significant difference in IC50 values was observed for the HEK 293T cells. Cell cycle analysis showed that the glucose appended complexes 2 and 4 are more photocytotoxic in cancer cells than in normal cells. Fluorescence microscopy was done to study the cellular localization of complex 4 having a pendant pyrenyl group.