293 resultados para autoimmunity


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Antigens of pathogenic microbes that mimic autoantigens are thought to be responsible for the activation of autoreactive T cells. Viral infections have been associated with the development of the neuroendocrine autoimmune diseases type 1 diabetes and stiff-man syndrome, but the mechanism is unknown. These diseases share glutamic acid decarboxylase (GAD65) as a major autoantigen. We screened synthetic peptide libraries dedicated to bind to HLA-DR3, which predisposes to both diseases, using clonal CD4+ T cells reactive to GAD65 isolated from a prediabetic stiff-man syndrome patient. Here we show that these GAD65-specific T cells crossreact with a peptide of the human cytomegalovirus (hCMV) major DNA-binding protein. This peptide was identified after database searching with a recognition pattern that had been deduced from the library studies. Furthermore, we showed that hCMV-derived epitope can be naturally processed by dendritic cells and recognized by GAD65 reactive T cells. Thus, hCMV may be involved in the loss of T cell tolerance to autoantigen GAD65 by a mechanism of molecular mimicry leading to autoimmunity.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Paraneoplastic neurological disorders may result from autoimmunity directed against antigens shared by the affected neurons and the associated cancer cells. We have recently reported the case of a woman with breast cancer and paraneoplastic lower motor neuron syndrome whose serum contained autoantibodies directed against axon initial segments and nodes of Ranvier of myelinated axons, including the axons of motoneurons. Here, we show that major targets of the autoantibodies of this patient are βIVΣ1 spectrin and βIV spectrin 140, two isoforms of the novel βIV spectrin gene, as well as a neuronal surface epitope yet to be identified. Partial improvement of the neurological symptoms following cancer removal was associated with a drastic reduction in the titer of the autoantibodies against βIV spectrin and nodal antigens in general, consistent with the autoimmune pathogenesis of the paraneoplastic lower motor neuron syndrome. The identification of βIV spectrin isoforms and surface nodal antigens as novel autoimmune targets in lower motor neuron syndrome provide new insights into the pathogenesis of this severe neurological disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cyclooxygenases (COXs) 1 and 2 are 72-kDa, intralumenal residents of the endoplasmic reticulum (ER) and nuclear envelope, where they catalyze the rate-limiting steps in the conversion of arachidonate to the physiologically dynamic prostanoids. Recent studies, including the generation of knockout mice, show COX-1 and COX-2 to have biologically distinct roles within cells and organisms. Also apparent is that arachidonate substrate is selectably metabolized by COX-2 after mitogen stimulation in many cells that contain both isoforms. Because COX-1 and COX-2 are highly conserved in all residues needed for catalysis and in their purified forms have almost identical kinetic properties, we have searched for COX-interacting ER proteins that might mediate these unique isoenzymic properties. Using COXs as bait in the yeast two-hybrid system, we identified autoimmunity- and apoptosis-associated nucleobindin (Nuc) as a protein that specifically interacts with both isoenzymes. COX-Nuc binding was substantiated by immunoprecipitation experiments, which showed that COX-1 and, to a lesser extent, COX-2 form complexes with Nuc in vitro. When overexpressed in COS-1 cells, Nuc was found to be extracellularly released. However, when Nuc was co-overexpressed with COX-1 or COX-2, its release was reduced by >80%. This finding suggests that COX isoenzymes participate in the retention of Nuc within the lumen of the ER, where COX may regulate the release of Nuc from the cell. It also identifies Nuc as a potential regulator of COXs through this interaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To explain the pathogenesis of autoimmunity, we hypothesize that following an infection the immune response spreads to tissue-specific autoantigens in genetically predisposed individuals eventually determining progression to disease. Molecular mimicry between viral and self antigens could, in some instances, initiate autoimmunity. Local elicitation of inflammatory cytokines following infection probably plays a pivotal role in determining loss of functional tolerance to self autoantigens and the destructive activation of autoreactive cells. We also describe the potential role of interleukin 10, a powerful B-cell activator, in increasing the efficiency of epitope recognition, that could well be crucial to the progression toward disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although the origin of autoimmune antibodies to double-stranded DNA is not known, the variable-region structures of such antibodies indicate that they are produced in response to antigen-selective stimulation. In accordance with this, results from experiments using artificial complexes of DNA and DNA-binding polypeptides for immunizations have indicated that DNA may induce these antibodies. Hence, the immunogenicity of DNA in vivo may depend upon other structures or processes that may render DNA immunogenic. We report that in vivo expression of a single DNA-binding protein, the polyoma virus T antigen, is sufficient to initiate production of anti-double-stranded DNA and anti-histone antibodies but not a panel of other autoantigens. Expression of a mutant, non-DNA-binding T antigen did result in strong production of antibodies to the T antigen, but only borderline levels of antibodies to DNA and no detectable antibodies to histones. Nonexpressing plasmid DNA containing the complete cDNA sequence for T antigen did not evoke such immune responses, indicating that DNA by itself is not immunogenic in vivo. The results represent a conceptual advance in understanding a potential molecular basis for initiation of autoimmunity in systemic lupus erythematosus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human T-cell-mediated autoimmune diseases are genetically linked to particular alleles of MHC class II genes. Susceptibility to pemphigus vulgaris (PV), an autoimmune disease of the skin, is linked to a rare subtype of HLA-DR4 (DRB1*0402, 1 of 22 known DR4 subtypes). The PV-linked DR4 subtype differs from a rheumatoid arthritis-associated DR4 subtype (DRB1*0404) only at three residues (DR beta 67, 70, and 71). The disease is caused by autoantibodies against desmoglein 3 (DG), and T cells are thought to trigger the autoantibody production against this keratinocyte adhesion molecule. Based on the DRB1*0402 binding motif, seven candidate peptides of the DG autoantigen were identified. T cells from four PV patients with active disease responded to one of these DG peptides (residues 190-204); two patients also responded to DG-(206-220). T-cell clones specific for DG-(190-204) secreted high levels of interleukins 4 and 10, indicating that they may be important in triggering the production of DG-specific autoantibodies. The DG-(190-204) peptide was presented by the disease-linked DRB1*0402 molecule but not by other DR4 subtypes. Site-directed mutagenesis of DRB1*0402 demonstrated that selective presentation of DG-(190-204), which carries a positive charge at the P4 position, was due to the negatively charged residues of the P4 pocket (DR beta 70 and 71). DR beta 71 has a negative charge in DRB1*0402 but a positive charge in other DR4 subtypes, including the DR4 subtypes linked to rheumatoid arthritis. The charge of the P4 pocket in the DR4 peptide binding site therefore appears to be a critical determinant of MHC-linked susceptibility to PV and rheumatoid arthritis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pemphigus vulgaris (PV) is a rare, potentially fatal, autoimmune disease that affects the skin and mucous membranes. The PV antigen (PVA) has been characterized as desmoglein 3. PV patients carry HLA-DR4- or HLA-DR6-bearing extended haplotypes. We recently demonstrated that patients with active disease have high titers of PV autoantibodies of the IgG1 and IgG4 subclasses. Patients in remission, healthy unaffected relatives, and some MHC-matched normal individuals have low levels of PV autoantibodies, which are IgG1 only. Furthermore, intraperitoneal injection of IgG from patients with active disease caused clinical disease in mice, but IgG from patients in remission, healthy relatives, or MHC-matched normal individuals did not. We prepared 12 peptides of 30 amino acids each (peptides Bos 1-12) spanning the extracellular domain of PVA. Patients with active disease recognize peptides Bos 1 and Bos 6 with high titers of IgG1 and IgG4 autoantibodies. Patients in remission have IgG1 autoantibodies to peptide Bos 1 only, in statistically significantly lower titers (P < 0.01). They no longer have IgG4 subclass autoantibodies to peptide Bos 6. Healthy relatives and normal unrelated individuals have low levels of only IgG1 autoantibodies that recognize only Bos 1. In vitro studies indicate that Bos 6-specific IgG and, to a lesser extent, Bos 1-specific IgG can cause acantholysis. Our data suggest that Bos 6-specific IgG4 is probably the main acantholytic autoantibody, while Bos 1-specific IgG4 may act as a facilitator or enhancer of the process. In this study we illustrate some of the paradigms that demonstrate the interactions between the MHC, subclass of autoantibodies, and peptide specificities of the autoantibodies in the autoimmune process. Thus, PV provides an important model to study the pathogenesis of autoimmunity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heart tissue destruction in chronic Chagas disease cardiopathy (CCC) may be caused by autoimmune recognition of heart tissue by a mononuclear cell infiltrate decades after Trypanosoma cruzi infection. Indirect evidence suggests that there is antigenic crossreactivity between T. cruzi and heart tissue. As there is evidence for immune recognition of cardiac myosin in CCC, we searched for a putative myosin-crossreactive T. cruzi antigen. T. cruzi lysate immunoblots were probed with anti-cardiac myosin heavy chain IgG antibodies (AMA) affinity-purified from CCC or asymptomatic Chagas disease patient-seropositive sera. A 140/116-kDa doublet was predominantly recognized by AMA from CCC sera. Further, recombinant T. cruzi protein B13--whose native protein is also a 140- and 116-kDa double band--was identified by crossreactive AMA. Among 28 sera tested in a dot-blot assay, AMA from 100% of CCC sera but only 14% of the asymptomatic Chagas disease sera recognized B13 protein (P = 2.3 x 10(-6)). Sequence homology to B13 protein was found at positions 8-13 and 1442-1447 of human cardiac myosin heavy chain. Competitive ELISA assays that used the correspondent myosin synthetic peptides to inhibit serum antibody binding to B13 protein identified the heart-specific AAALDK (1442-1447) sequence of human cardiac myosin heavy chain and the homologous AAAGDK B13 sequence as the respective crossreactive epitopes. The recognition of a heart-specific T. cruzi crossreactive epitope, in strong association with the presence of chronic heart lesions, suggests the involvement of crossreactivity between cardiac myosin and B13 in the pathogenesis of CCC.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Upon activation, T cells require energy for growth, proliferation, and function. Effector T (Teff) cells, such as Th1 and Th17 cells, utilize high levels of glycolytic metabolism to fuel proliferation and function. In contrast, Treg cells require oxidative metabolism to fuel suppressive function. It remains unknown how Teff/Treg-cell metabolism is altered when nutrients are limited and leptin levels are low. We therefore examined the role of malnutrition and associated hypoleptinemia on Teff versus Treg cells. We found that both malnutrition-associated hypoleptinemia and T cell-specific leptin receptor knockout suppressed Teff-cell number, function, and glucose metabolism, but did not alter Treg-cell metabolism or suppressive function. Using the autoimmune mouse model EAE, we confirmed that fasting-induced hypoleptinemia altered Teff-cell, but not Treg-cell, glucose metabolism, and function in vivo, leading to decreased disease severity. To explore potential mechanisms, we examined HIF-1α, a key regulator of Th17 differentiation and Teff-cell glucose metabolism, and found HIF-1α expression was decreased in T cell-specific leptin receptor knockout Th17 cells, and in Teff cells from fasted EAE mice, but was unchanged in Treg cells. Altogether, these data demonstrate a selective, cell-intrinsic requirement for leptin to upregulate glucose metabolism and maintain function in Teff, but not Treg cells.