921 resultados para Virus-specific T cell


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multiple sclerosis (MS) is an autoimmune disease with a genetic component, caused at least in part by aberrant lymphocyte activity. The whole blood mRNA transcriptome was measured for 99 untreated MS patients: 43 primary progressive MS, 20 secondary progressive MS, 36 relapsing remitting MS and 45 age-matched healthy controls. The ANZgene Multiple Sclerosis Genetics Consortium genotyped more than 300 000 SNPs for 115 of these samples. Transcription from genes on translational regulation, oxidative phosphorylation, immune synapse and antigen presentation pathways was markedly increased in all forms of MS. Expression of genes tagging T cells was also upregulated (P < 10-12) in MS. A T cell gene signature predicts disease state with a concordance index of 0.79 with age and gender as co-variables, but the signature is not associated with clinical course or disability. The ANZgene genome wide association screen identified two novel regions with genome wide significance: one encoding the T cell co-stimulatory molecule, CD40; the other a region on chromosome 12q13-14. The CD40 haplotype associated with increased MS susceptibility has decreased gene expression in MS (P < 0.0007). The second MS susceptibility region includes 17 genes on 12q13-14 in tight linkage disequilibrium. Of these, only 13 are expressed in leukocytes, and of these the expression of one, FAM119B, is much lower in the susceptibility haplotype (P tdthomlt; 10-14). Overall, these data indicate dysregulation of T cells can be detected in the whole blood of untreated MS patients, and supports targeting of activated T cells in therapy for all forms of MS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Japanese encephalitis virus (JEV) is a positive stranded RNA virus that belongs to the flavivirus group, JEV infection damages the central nervous system (CNS) and is one of the main causative agents of acute encephalitis, H-2 restricted virus-specific cytotoxic T lymphocytes (CTL) have been generated specifically against JEV in our laboratory and these CTL have been shown to protect mice against lethal challenge with JEV, Virus replication was found to be inhibited in the brains of animals that mere adoptively transferred with JEV specific CTL as revealed by immunohistological staining as,veil as viral plaque assays. We further show that virus specific CTL could be recovered from such protected mice as long as 45 days after adoptive transfer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Immunotherapy treatments for cancer are becoming increasingly successful, however to further improve our understanding of the T-cell recognition involved in effective responses and to encourage moves towards the development of personalised treatments for leukaemia immunotherapy, precise antigenic targets in individual patients have been identified. Cellular arrays using peptide-MHC (pMHC) tetramers allow the simultaneous detection of different antigen specific T-cell populations naturally circulating in patients and normal donors. We have developed the pMHC array to detect CD8+ T-cell populations in leukaemia patients that recognise epitopes within viral antigens (cytomegalovirus (CMV) and influenza (Flu)) and leukaemia antigens (including Per Arnt Sim domain 1 (PASD1), MelanA, Wilms' Tumour (WT1) and tyrosinase). We show that the pMHC array is at least as sensitive as flow cytometry and has the potential to rapidly identify more than 40 specific T-cell populations in a small sample of T-cells (0.8-1.4 x 106). Fourteen of the twenty-six acute myeloid leukaemia (AML) patients analysed had T cells that recognised tumour antigen epitopes, and eight of these recognised PASD1 epitopes. Other tumour epitopes recognised were MelanA (n = 3), tyrosinase (n = 3) and WT1126-134 (n = 1). One of the seven acute lymphocytic leukaemia (ALL) patients analysed had T cells that recognised the MUC1950-958 epitope. In the future the pMHC array may be used provide point of care T-cell analyses, predict patient response to conventional therapy and direct personalised immunotherapy for patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Antiretroviral-therapy has dramatically changed the course of HIV infection and HIV-infected (HIV(+)) individuals are becoming more frequently eligible for solid-organ transplantation. However, only scarce data are available on how immunosuppressive (IS) strategies relate to transplantation outcome and immune function. We determined the impact of transplantation and immune-depleting treatment on CD4+ T-cell counts, HIV-, EBV-, and Cytomegalovirus (CMV)-viral loads and virus-specific T-cell immunity in a 1-year prospective cohort of 27 HIV(+) kidney transplant recipients. While the results show an increasing breadth and magnitude of the herpesvirus-specific cytotoxic T-cell (CTL) response over-time, they also revealed a significant depletion of polyfunctional virus-specific CTL in individuals receiving thymoglobulin as a lymphocyte-depleting treatment. The disappearance of polyfunctional CTL was accompanied by virologic EBV-reactivation events, directly linking the absence of specific polyfunctional CTL to viral reactivation. The data provide first insights into the immune-reserve in HIV+ infected transplant recipients and highlight new immunological effects of thymoglobulin treatment. Long-term studies will be needed to assess the clinical risk associated with thymoglobulin treatment, in particular with regards to EBV-associated lymphoproliferative diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Paracoccidioidomycosis is a deep endemic mycosis associated with an antigen-specific immunodeficiency. To examine the role of apoptosis in this immunodeficiency, peripheral blood mononuclear cells (PBMC) of patients with paracoccidioidomycosis and controls were stimulated with the main antigen of Paracoccidioides brasiliensis (gp43) and an unrelated fungal antigen (from Candida albicans, CMA) and analyzed for annexin V and propidium iodide staining by flow cytometry. Control PBMC proliferated well with both antigens. Patients' PBMC proliferated only with CMA, but presented higher levels of apoptosis with gp43 and CMA than in their own unstimulated cultures. Moreover, gp43-triggered apoptosis in control PBMC was lower than in those of the patients. Thus, patient but not control gp43-stimulated T cells apparently remained anergized and subsequently underwent apoptosis. While CMA-induced apoptosis is likely triggered by activation-induced cell death, this is apparently not the case in gp43-induced apoptosis because of the lack of cell cycling and IL-2 in the gp43-stimulated cultures. However, higher IL-10 levels were found in gp43-stimulated patient PBMC cultures. Addition of a neutralizing anti-IL-10 antibody to the cultures resulted in increased apoptosis levels only in gp43-stimulated patient PBMC cultures. Our results suggest that apoptosis plays a role in the patients' antigen-specific hyporesponsiveness and that IL-10 may have an antiapoptotic role. (C) 2002 Elsevier B.V. (USA).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Immunotherapy with T cells genetically modified by retroviral transfer of tumor-associated antigen (TAA)-specific T cell receptors (TCR) is a promising approach in targeting cancer. Therefore, using a universal TAA to target different tumor entities by only one therapeutic approach was the main criteria for our TAA-specific TCR. Here, an optimized (opt) αβ-chain p53(264-272)-specific and an opt single chain (sc) p53(264-272)-specific TCR were designed, to reduce mispairing reactions of endogenous and introduced TCR α and TCR β-chains, which might lead to off-target autoimmune reactions, similar to Graft-versus-host disease (GvHD). rnIn this study we evaluated the safety issues, which rise by the risk of p53TCR gene transfer-associated on/off-target toxicities as well as the anti-tumor response in vivo in a syngeneic HLA-A*0201 transgenic mouse model. We could successfully demonstrate that opt sc p53-specific TCR-redirected T cells prevent TCR mispairing-mediated lethal off-target autoimmunity in contrast to the parental opt αβ-chain p53-specific TCR. Since the sc p53-specific TCR proofed to be safe, all further studies were performed using sc p53-specific TCR redirected T cells only. Infusion of p53-specific TCR-redirected T cells in Human p53 knock-in (Hupki) mice after lymphodepletion-preconditioning regimen with either sublethal body irradiation (5Gy) or chemotherapy (fludarabine and cyclophosphamide) in combination with vaccination (anti-CD40, CpG1668 and p53(257-282) peptide) did not result in a depletion of hematopoietic cells. Moreover, adoptive transfer of high numbers of p53-specific TCR-redirected T cells in combination with Interleukin 2 (IL-2) also did not lead to toxic on-target reactions. The absence of host tissue damage was confirmed by histology and flow cytometry analysis. Furthermore, p53-specific TCR-redirected T cells were able to lyse p53+A2.1+ tumor cells in vitro. However, in vivo studies revealed the potent suppressive effect of the tumor microenvironment (TME) mediated by tumor-infiltrating myeloid-derived suppressor cells (MDSC). Accordingly, we could improve an insufficient anti-tumor response in vivo after injection of the sc p53-specific TCR-redirected T cells by additional depletion of immunosuppressive cells of the myeloid lineage.rnTogether, these data suggest that the optimized sc p53(264-272)-specific TCR may represent a safe and efficient approach for TCR-based gene therapy. However, combinations of immunotherapeutic strategies are needed to enhance the efficacy of adoptive cell therapy (ACT)-mediated anti-tumor responses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the context of drug hypersensitivity, our group has recently proposed a new model based on the structural features of drugs (pharmacological interaction with immune receptors; p-i concept) to explain their recognition by T cells. According to this concept, even chemically inert drugs can stimulate T cells because certain drugs interact in a direct way with T-cell receptors (TCR) and possibly major histocompatibility complex molecules without the need for metabolism and covalent binding to a carrier. In this study, we investigated whether mouse T-cell hybridomas transfected with drug-specific human TCR can be used as an alternative to drug-specific T-cell clones (TCC). Indeed, they behaved like TCC and, in accordance with the p-i concept, the TCR recognize their specific drugs in a direct, processing-independent, and dose-dependent way. The presence of antigen-presenting cells was a prerequisite for interleukin-2 production by the TCR-transfected cells. The analysis of cross-reactivity confirmed the fine specificity of the TCR and also showed that TCR transfectants might provide a tool to evaluate the potential of new drugs to cause hypersensitivity due to cross-reactivity. Recombining the alpha- and beta-chains of sulfanilamide- and quinolone-specific TCR abrogated drug reactivity, suggesting that both original alpha- and beta-chains were involved in drug binding. The TCR-transfected hybridoma system showed that the recognition of two important classes of drugs (sulfanilamides and quinolones) by TCR occurred according to the p-i concept and provides an interesting tool to study drug-TCR interactions and their biological consequences and to evaluate the cross-reactivity potential of new drugs of the same class.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Invariant human TCR Valpha24-Jalpha18+/Vbeta11+ NKT cells (iNKT) are restricted by CD1d-alpha-glycosylceramides. We analyzed crystal structures and binding characteristics for an iNKT TCR plus two CD1d-alpha-GalCer-specific Vbeta11+ TCRs that use different TCR Valpha chains. The results were similar to those previously reported for MHC-peptide-specific TCRs, illustrating the versatility of the TCR platform. Docking TCR and CD1d-alpha-GalCer structures provided plausible insights into their interaction. The model supports a diagonal orientation of TCR on CD1d and suggests that complementarity determining region (CDR)3alpha, CDR3beta, and CDR1beta interact with ligands presented by CD1d, whereas CDR2beta binds to the CD1d alpha1 helix. This docking provides an explanation for the dominant usage of Vbeta11 and Vbeta8.2 chains by human and mouse iNKT cells, respectively, for recognition of CD1d-alpha-GalCer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND Allopurinol is a main cause of severe cutaneous adverse reactions (SCAR). How allopurinol induces hypersensitivity remains unknown. Pre-disposing factors are the presence of the HLA-B*58:01 allele, renal failure and possibly the dose taken. OBJECTIVE Using an in vitro model, we sought to decipher the relationship among allopurinol metabolism, HLA-B*58:01 phenotype and drug concentrations in stimulating drug-specific T cells. METHODS Lymphocyte transformation test (LTT) results of patients who had developed allopurinol hypersensitivity were analysed. We generated allopurinol or oxypurinol-specific T cell lines (ALP/OXP-TCLs) from allopurinol naïve HLA-B*58:01(+) and HLA-B*58:01(-) individuals using various drug concentrations. Their reactivity patterns were analysed by flow cytometry and (51) Cr release assay. RESULTS Allopurinol allergic patients are primarily sensitized to oxypurinol in a dose-dependent manner. TCL induction data show that both the presence of HLA-B*58:01 allele and high concentration of drug are important for the generation of drug-specific T cells. The predominance of oxypurinol-specific lymphocyte response in allopurinol allergic patients can be explained by the rapid conversion of allopurinol to oxypurinol in vivo rather than to its intrinsic immunogenicity. OXP-TCLs do not recognize allopurinol and vice versa. Finally, functional avidity of ALP/OXP-TCL is dependent on both the induction dose and HLA-B*58:01 status. CONCLUSIONS AND CLINICAL RELEVANCE This study establishes the important synergistic role of drug concentration and HLA-B*58:01 allele in the allopurinol or oxypurinol-specific T cell responses. Despite the prevailing dogma that Type B adverse drug reactions are dose independent, allopurinol hypersensitivity is primarily driven by oxypurinol-specific T cell response in a dose-dependent manner, particular in the presence of HLA-B*58:01 allele.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Foxp3+ regulatory T (Treg) cells are essential for the maintenance of immune homeostasis and tolerance. During viral infections, Treg cells can limit the immunopathology resulting from excessive inflammation, yet potentially inhibit effective antiviral T cell responses and promote virus persistence. We report here that the fast-replicating LCMV strain Docile triggers a massive expansion of the Treg population that directly correlates with the size of the virus inoculum and its tendency to establish a chronic, persistent infection. This Treg cell proliferation was greatly enhanced in IL-21R-/- mice and depletion of Treg cells partially rescued defective CD8+ T cell cytokine responses and improved viral clearance in some but not all organs. Notably, IL-21 inhibited Treg cell expansion in a cell intrinsic manner. Moreover, experimental augmentation of Treg cells driven by injection of IL-2/anti-IL-2 immune complexes drastically impaired the functionality of the antiviral T cell response and impeded virus clearance. As a consequence, mice became highly susceptible to chronic infection following exposure to low virus doses. These findings reveal virus-driven Treg cell proliferation as potential evasion strategy that facilitates T cell exhaustion and virus persistence. Furthermore, they suggest that besides its primary function as a direct survival signal for antiviral CD8+ T cells during chronic infections, IL-21 may also indirectly promote CD8+ T cell poly-functionality by restricting the suppressive activity of infection-induced Treg cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Treatment of metastatic melanoma with tumor reactive T cells (adoptive T cell therapy, ACT) is a promising approach associated with a high clinical response rate. However, further optimization of this treatment modality is required to increase the clinical response after this therapy. ACT in melanoma involves an initial phase (pre-REP) of tumor-infiltrating lymphocyte (TIL) expansion ex vivo from tumor isolates followed by a second phase, “rapid expansion protocol” (REP) generating the billions of cells used as the TIL infusion product. The main question addressed in this thesis was how the currently used REP affected the responsiveness of the CD8+ T cells to defined melanoma antigens. We hypothesized that the REP drives the TIL to further differentiate and become hyporesponsive to antigen restimulation, therefore, proper cytokine treatment or other ways to expand TIL is required to improve upon this outcome. We evaluated the response of CD8+ TIL to melanoma antigen restimulation using MART-1 peptide-pulsed mature DC in vitro. Post-REP TILs were mostly hypo-responsive with poor proliferation and higher apoptosis. Phenotypic analysis revealed that the expression of CD28 was significantly reduced in post-REP TILs. By sorting experiment and microarray analysis, we confirmed that the few CD28+ post-REP TILs had superior survival capacity and proliferated after restimulation. We then went on to investigate methods to maintain CD28 expression during the REP and improve TIL responsiveness. Firstly, IL-15 and IL-21 were found to synergize in maintaining TIL CD28 expression and antigenic responsiveness during REP. Secondly, we found IL-15 was superior as compared to IL-2 in supporting the long-term expansion of antigen-specific CD8+ TIL after restimulation. These results suggest that current expansion protocols used for adoptive T-cell therapy in melanoma yield largely hyporesponsive products containing CD8+ T cells unable to respond in vivo to re-stimulation with antigen. A modification of our current approaches by using IL-15+IL-21 as supporting cytokines in the REP, or/and administration of IL-15 instead of IL-2 after TIL infusion, may enhance the anti-tumor efficacy and long-term persistence of infused T cells in vivo.