69 resultados para Synechocystis PCC6803


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present work is a base line attempt to investigate and assess the toxicities of three surfactants viz. anionic sodium dodecyl sulfate (SDS), non ionic Triton X-1OO (TX-IOO) and cationic cetyl trimethyl ammonium bromide (CTAB). These compounds represent simple members of the often neglected group of aquatic pollutants i.e. the anionic alkyl sulfates, non ionics and the cationics. These compounds are widely used In plastic industry, pesticide/herbicide formulations, detergents, oil spill dispersants, molluscicides etc. The test organisms selected for the present study are the cyanobacterium Synechocystis salina Wislouch representing a primary producer in the marine environment and a fresh water adapted euryhaline teleost Oreochromis mossambicus (peters) at the consumer level of the ecological pyramid. The fish species, though not indigenous to our country, is now found ubiquitously in fresh water systems and estuaries. Also it is highly resistant to pollutants and has been suggested as an indicator of pollution in tropical region .

Relevância:

20.00% 20.00%

Publicador:

Resumo:

National Centre for Aquatic Animal Health, School of Environmental Studies, Cochin University of Science and Technology

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The group cyanobacteria includes a large number of organisms characterised by a low state of cellular organization. Their cells lack a well defined nucleus. Cell division is by division of the protoplast by an ingrowth of the septum. These organisms are characterised generally by a blue green colouration of the cell, the chief pigments being chlorophyll-a, carotenes, xanthophylls, C phycocyanin and C phycoerythrin. The product of photosynthesis is glycogen. These organisms lack flagellate reproductive bodies and there is a total lack of sexual reproduction. They are also unique because of the presence of murein in the place of cellulose (cell wall) and the absence of chloroplast, mitochondria and endoplasmic reticulum. Just like bacteria some of them possess Plasmids and can fix atmospheric nitrogen. In the present study growth kinetics, heavy metal tolerance, tolerance mechanisms, heavy metal intake, and antibacterial activity of §ynechocystics salina Wislouch - a nanoplanktonic, euryhaline, Cyanobacterium present in Cochin back waters has been carried out for the potential biotechnological application of this organism. _§; salina occur as small spherical cells of 3n diameter (sometimes in pairs) with bluish green colour. The species is characterised by jerky movement of the cells and is structrually similar to other cyanobacteria

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Synechocystis MCCB 114 and 115 were segregated as putative probionts for shrimp larvae from a collection of 54 cyanobacterial cultures enriched from seawater. On feeding Penaeus monodon post-larvae with the cyanobacteria, the generic diversity of the intestinal bacterial flora could be enhanced with substantial reduction or total absence of Vibrio spp. A significant difference (p < 0.001) in the percent survival of batches of post-larvae fed on the cyanobacterial cultures was observed and, on repeated challenge with V. harveyi, the relative percent survival of those batches of larvae fed on Synechocystis MCCB 114 and 115 was significantly higher. The Synechocystis MCCB 114 and 115 cultures were found to contain high levels of protein (34 to 43%), in addition to carotenoids

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Synechocystis PCC 6803 is a photosynthetic bacterium that has the potential to make bioproducts from carbon dioxide and light. Biochemical production from photosynthetic organisms is attractive because it replaces the typical bioprocessing steps of crop growth, milling, and fermentation, with a one-step photosynthetic process. However, low yields and slow growth rates limit the economic potential of such endeavors. Rational metabolic engineering methods are hindered by limited cellular knowledge and inadequate models of Synechocystis. Instead, inverse metabolic engineering, a scheme based on combinatorial gene searches which does not require detailed cellular models, but can exploit sequence data and existing molecular biological techniques, was used to find genes that (1) improve the production of the biopolymer poly-3-hydroxybutyrate (PHB) and (2) increase the growth rate. A fluorescence activated cell sorting assay was developed to screen for high PHB producing clones. Separately, serial sub-culturing was used to select clones that improve growth rate. Novel gene knock-outs were identified that increase PHB production and others that increase the specific growth rate. These improvements make this system more attractive for industrial use and demonstrate the power of inverse metabolic engineering to identify novel phenotype-associated genes in poorly understood systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Identification of extracellular conductive pilus-like structures (PLS) i.e. microbial nanowires has spurred great interest among scientists due to their potential applications in the fields of biogeochemistry, bioelectronics, bioremediation etc. Using conductive atomic force microscopy, we identified microbial nanowires in Microcystis aeruginosa PCC 7806 which is an aerobic, photosynthetic microorganism. We also confirmed the earlier finding that Synechocystis sp. PCC 6803 produces microbial nanowires. In contrast to the use of highly instrumented continuous flow reactors for Synechocystis reported earlier, we identified simple and optimum culture conditions which allow increased production of nanowires in both test cyanobacteria. Production of these nanowires in Synechocystis and Microcystis were found to be sensitive to the availability of carbon source and light intensity. These structures seem to be proteinaceous in nature and their diameter was found to be 4.5-7 and 8.5-11 nm in Synechocystis and M. aeruginosa, respectively. Characterization of Synechocystis nanowires by transmission electron microscopy and biochemical techniques confirmed that they are type IV pili (TFP) while nanowires in M. aeruginosa were found to be similar to an unnamed protein (GenBank : CAO90693.1). Modelling studies of the Synechocystis TFP subunit i.e. PilA1 indicated that strategically placed aromatic amino acids may be involved in electron transfer through these nanowires. This study identifies PLS from Microcystis which can act as nanowires and supports the earlier hypothesis that microbial nanowires are widespread in nature and play diverse roles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The complete sequence of the Synechocystis chromosome has revealed a phytochrome-like sequence that yielded an authentic phytochrome when overexpressed in Escherichia coli. In this paper we describe this recombinant Synechocystis phytochrome in more detail. Islands of strong similarity to plant phytochromes were found throughout the cyanobacterial sequence whereas C-terminal homologies identify it as a likely sensory histidine kinase, a family to which plant phytochromes are related. An ≈300 residue portion that is important for plant phytochrome function is missing from the Synechocystis sequence, immediately in front of the putative kinase region. The recombinant apoprotein is soluble and can easily be purified to homogeneity by affinity chromatography. Phycocyanobilin and similar tetrapyrroles are covalently attached within seconds, an autocatalytic process followed by slow conformational changes culminating in red-absorbing phytochrome formation. Spectral absorbance characteristics are remarkably similar to those of plant phytochromes, although the conformation of the chromophore is likely to be more helical in the Synechocystis phytochrome. According to size-exclusion chromatography the native recombinant apoproteins and holoproteins elute predominantly as 115- and 170-kDa species, respectively. Both tend to form dimers in vitro and aggregate under low salt conditions. Nevertheless, the purity and solubility of the recombinant gene product make it a most attractive model for molecular studies of phytochrome, including x-ray crystallography.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Combinatorial libraries of synthetic and natural products are an important source of molecular information for the interrogation of biological targets. Methods for the intracellular production of libraries of small, stable molecules would be a valuable addition to existing library technologies by combining the discovery potential inherent in small molecules with the large library sizes that can be realized by intracellular methods. We have explored the use of split inteins (internal proteins) for the intracellular catalysis of peptide backbone cyclization as a method for generating proteins and small peptides that are stabilized against cellular catabolism. The DnaE split intein from Synechocystis sp. PCC6803 was used to cyclize the Escherichia coli enzyme dihydrofolate reductase and to produce the cyclic, eight-amino acid tyrosinase inhibitor pseudostellarin F in bacteria. Cyclic dihydrofolate reductase displayed improved in vitro thermostability, and pseudostellarin F production was readily apparent in vivo through its inhibition of melanin production catalyzed by recombinant Streptomyces antibioticus tyrosinase. The ability to generate and screen for backbone cyclic products in vivo is an important milestone toward the goal of generating intracellular cyclic peptide and protein libraries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To investigate the role of phosphatidylglycerol (PG) in photosynthesis, we constructed a mutant defective in the CDP-diacylglycerol synthase gene from a cyanobacterium, Synechocystis sp. PCC6803. The mutant, designated as SNC1, required PG supplementation for growth. Growth was repressed in PG-free medium concomitantly with the decrease in cellular content of PG. These results indicate that PG is essential, and that SNC1 is defective in PG synthesis. Decrease in PG content was accompanied by a reduction in the cellular content of chlorophyll, but with little effect on the contents of phycobilisome pigments, which showed that levels of chlorophyll–protein complexes decreased without alteration of those of phycobilisomes. Regardless of the decrease in the PG content, CO2-dependent photosynthesis by SNC1 was similar to that by the wild type on a chlorophyll basis, but consequently became lower on a cell basis. Simultaneously, the ratio of oxygen evolution of photosystem II (PSII) measured with p-benzoquinone to that of CO2-dependent photosynthesis, which ranged between 1.3 and 1.7 in the wild type. However, it was decreased in SNC1 from 1.3 to 0.4 during the early growth phase where chlorophyll content and CO2-dependent photosynthesis were little affected, and then finally to 0.1, suggesting that PSII first lost its ability to reduce p-benzoquinone and then decreased in its level and actual activity. These results indicate that PG contributes to the accumulation of chlorophyll–protein complexes in thylakoid membranes, and also to normal functioning of PSII.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ORF slr0798, now designated ziaA, from Synechocystis PCC 6803 encodes a polypeptide with sequence features of heavy metal transporting P-type ATPases. Increased Zn2+ tolerance and reduced 65Zn accumulation was observed in Synechococcus PCC 7942, strain R2-PIM8(smt), containing ziaA and upstream regulatory sequences, compared with control cells. Conversely, reduced Zn2+ tolerance was observed following disruption of ziaA in Synechocystis PCC 6803, and ziaA-mediated restoration of Zn2+ tolerance has subsequently been used as a selectable marker for transformation. Nucleotide sequences upstream of ziaA, fused to a promoterless lacZ gene, conferred Zn2+-dependent β-galactosidase activity when introduced into R2-PIM8(smt). The product of ORF sll0792, designated ZiaR, is a Zn2+-responsive repressor of ziaA transcription. Reporter gene constructs lacking ziaR conferred elevated Zn2+-independent expression from the ziaA operator–promoter in R2-PIM8(smt). Gel retardation assays detected ZiaR-dependent complexes forming with the zia operator–promoter and ZiaR–DNA binding was enhanced by treatment with a metal-chelator in vitro. Two mutants of ZiaR (C71S/C73S and H116R) bound to, and repressed expression from, the ziaA operator–promoter but were unable to sense Zn2+. Metal coordination to His-imidazole and Cys-thiolate ligands at these residues of ZiaR is thus implicated in Zn2+-perception by Synechocystis PCC 6803.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The small heat shock proteins (sHSPs) are ubiquitous stress proteins proposed to act as molecular chaperones to prevent irreversible protein denaturation. We characterized the chaperone activity of Synechocystis HSP17 and found that it has not only protein-protective activity, but also a previously unrecognized ability to stabilize lipid membranes. Like other sHSPs, recombinant Synechocystis HSP17 formed stable complexes with denatured malate dehydrogenase and served as a reservoir for the unfolded substrate, transferring it to the DnaK/DnaJ/GrpE and GroEL/ES chaperone network for subsequent refolding. Large unilamellar vesicles made of synthetic and cyanobacterial lipids were found to modulate this refolding process. Investigation of HSP17-lipid interactions revealed a preference for the liquid crystalline phase and resulted in an elevated physical order in model lipid membranes. Direct evidence for the participation of HSP17 in the control of thylakoid membrane physical state in vivo was gained by examining an hsp17− deletion mutant compared with the isogenic wild-type hsp17+ revertant Synechocystis cells. We suggest that, together with GroEL, HSP17 behaves as an amphitropic protein and plays a dual role. Depending on its membrane or cytosolic location, it may function as a “membrane stabilizing factor” as well as a member of a multichaperone protein-folding network. Membrane association of sHSPs could antagonize the heat-induced hyperfluidization of specific membrane domains and thereby serve to preserve structural and functional integrity of biomembranes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plant chloroplasts originated from an endosymbiotic event by which an ancestor of contemporary cyanobacteria was engulfed by an early eukaryotic cell and then transformed into an organelle. Oxygenic photosynthesis is the specific feature of cyanobacteria and chloroplasts, and the photosynthetic machinery resides in an internal membrane system, the thylakoids. The origin and genesis of thylakoid membranes, which are essential for oxygenic photosynthesis, are still an enigma. Vipp1 (vesicle-inducing protein in plastids 1) is a protein located in both the inner envelope and the thylakoids of Pisum sativum and Arabidopsis thaliana. In Arabidopsis disruption of the VIPP1 gene severely affects the plant's ability to form properly structured thylakoids and as a consequence to carry out photosynthesis. In contrast, Vipp1 in Synechocystis appears to be located exclusively in the plasma membrane. Yet, as in higher plants, disruption of the VIPP1 gene locus leads to the complete loss of thylakoid formation. So far VIPP1 genes are found only in organisms carrying out oxygenic photosynthesis. They share sequence homology with a subunit encoded by the bacterial phage shock operon (PspA) but differ from PspA by a C-terminal extension of about 30 amino acids. In two cyanobacteria, Synechocystis and Anabaena, both a VIPP1 and a pspA gene are present, and phylogenetic analysis indicates that VIPP1 originated from a gene duplication of the latter and thereafter acquired its new function. It also appears that the C-terminal extension that discriminates VIPP1 proteins from PspA is important for its function in thylakoid formation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previously, we identified a novel gene, pmgA, as an essential factor to support photomixotrophic growth of Synechocystis species PCC 6803 and reported that a strain in which pmgA was deleted grew better than the wild type under photoautotrophic conditions. To gain insight into the role of pmgA, we investigated the mutant phenotype of pmgA in detail. When low-light-grown (20 μE m−2 s−1) cells were transferred to high light (HL [200μE m−2 s−1]), pmgA mutants failed to respond in the manner typically associated with Synechocystis. Specifically, mutants lost their ability to suppress accumulation of chlorophyll and photosystem I and, consequently, could not modulate photosystem stoichiometry. These phenotypes seem to result in enhanced rates of photosynthesis and growth during short-term exposure to HL. Moreover, mixed-culture experiments clearly demonstrated that loss of pmgA function was selected against during longer-term exposure to HL, suggesting that pmgA is involved in acquisition of resistance to HL stress. Finally, early induction of pmgA expression detected by reverse transcriptase-PCR upon the shift to HL led us to conclude that pmgA is the first gene identified, to our knowledge, as a specific regulatory factor for HL acclimation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several mutant strains of Synechocystis sp. PCC 6803 with large deletions in the D-E loop of the photosystem II (PSII) reaction center polypeptide D1 were subjected to high light to investigate the role of this hydrophilic loop in the photoinhibition cascade of PSII. The tolerance of PSII to photoinhibition in the autotrophic mutant ΔR225-F239 (PD), when oxygen evolution was monitored with 2,6-dichloro-p-benzoquinone and the equal susceptibility compared with control when monitored with bicarbonate, suggested an inactivation of the QB-binding niche as the first event in the photoinhibition cascade in vivo. This step in PD was largely reversible at low light without the need for protein synthesis. Only the next event, inactivation of QA reduction, was irreversible and gave a signal for D1 polypeptide degradation. The heterotrophic deletion mutants ΔG240-V249 and ΔR225-V249 had severely modified QB pockets, yet exhibited high rates of 2,6-dichloro-p-benzoquinone-mediated oxygen evolution and less tolerance to photoinhibition than PD. Moreover, the protein-synthesis-dependent recovery of PSII from photoinhibition was impaired in the ΔG240-V249 and ΔR225-V249 mutants because of the effects of the mutations on the expression of the psbA-2 gene. No specific sequences in the D-E loop were found to be essential for high rates of D1 polypeptide degradation.