984 resultados para SELECTION PRESSURE


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Connective tissue growth factor (CTGF) plays an important role in regulation of cell growth, differentiation, apoptosis and individual development in animals. The study of sequences variation and molecular evolution of CTGF gene across various species of the cyprinid could be helpful for understanding of speciation and gene divergence in this kind of fish. In this study, 19 novel sequences of CTGF gene were obtained from the representative species of the family Cyprinidae using PCR amplification, cloning and sequencing. Phylogenetic relationships of Cyprinidae were reconstructed by neighbor-joining (NJ), maximum parsimony (MP), maximum likelihood (ML) and Bayesian method. Oryzias latipes from the family Cyprinodontidae was assigned to be the outgroup taxon. Leuciscini and Barbini were clustered into the monophyletic lineages, respectively, with the high nodal supports. The estimation of the ratio of non-synonymous to synonymous substitution (dN/dS) for the various branches indicated that there stood the different evolution rates between the Leuciscini and the Barbini. With the ratio of dN/dS of the Leuciscini being lower than that of the Barbini, species within the Barbini were demonstrated to be subjected to the relatively less selection pressure and under the relaxable evolution background. A 6 by indel (insertion/deletion) was found at the 5' end of CTGF gene of Cyprinidae, and this 6 by deletion only appeared in the Leuciscini, which is a typical characteristic of the Leuciscini and provides evidence for the monophylogeny of the Leuciscini. For the amino acid sequences of CTGF protein, the most variations and indels were distributed in the signal region and IGFBP region of this protein, implying that these variations were correlated with the regulation of the CTGF gene expression and protein activity. (c) 2007 National Natural Science Foundation of China and Chinese Academy of Sciences. Published by Elsevier Limited and Science in China Press. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A tetraploidization event took place in the cyprinid lineage leading to goldfishes about 15 million years ago. A PCR survey for Hox genes in the goldfish Carassius auratus auratus (Actinopterygii: Cyprinidae) was performed to assess the consequences of this genome duplication. Not surprisingly, the genomic organization of the Hox gene clusters of goldfish is similar to that of the closely related zebrafish (Danio rerio). However, the goldfish exhibits a much larger number of recent pseudogenes, which are characterized by indels. These findings are consistent with the hypothesis that dosage effects cause selection pressure to rapidly silence crucial developmental regulators after a tetraploidization event.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Embryogenic calli of Kentucky bluegrass, named Md, were induced from mature seeds and embryos, and proliferated on medium K3 containing 2,4-dichlorophenoxyacetic acid (2,4-D, 10.0 mumol/L), 6-benzylaminopurine (BAR, 0.5 mumol/L) and K5 which was the K3 medium supplemented with cupric sulfa (0.5 mumol/L) under dim-light condition (20-30 mumol.m(-2).s-1, 16 h light) at 24 degreesC. Embryogenic calli were transformed with plasmids pDM805 Carring bar and gus genes, Which was mediated by an Agrobacterium strain AGL1, four transgenic lines were obtained. The important factors that affect the transformation efficiency and obtain desirable number of transgenic plants included: (1) the quality of embryogenic calli; (2) light condition and time of co-cultivation; (3) concentration of antibiotics used for suppressing the overgrowth of Agrobacterium in the course of transformed plant regeneration; (4) selection pressure, etc. The micro nutrient of cupric had significant influence on the quality of embryogenic calli. This presentation is the first successful protocol of Kentucky bluegrass transformation mediated by Agrobacterium.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The human gastrointestinal (GI) tract is colonized by a dense and diverse bacterial community, the commensal microbiota, which plays an important role in the overall health of individuals. This microbiota is relatively stable throughout adult life, but may fluctuate over time with aging and disease. The adaptation of the gut microbiota to our changing life-style is probably the reason for the large inter-individual variation observed among different people. Since the gut microbiota plays an essential role in interactions with host metabolism, it is of utmost importance to explore this relationship. The elderly intestinal microbiota has been the subject of a number of studies in recent years. The results presented in this thesis have further contributed to the expansion of knowledge related to gut microbiota research highlighting the combined effect of culture based and molecular methods as powerful tools for understanding the true impact of microbes. The degree of correlation between measurements from both methods suggested that a single method is capable of profiling intestinal Bifidobacterium spp., Lactobacillus spp. and Enterobacteriaceae populations. Bacteriocins have shown great promise as alternatives to traditional antibiotics. In this respect, the isolation and characterisation of bacteriocinogenic strains are important due to growing evidence indicating bacteriocin production as a potential probiotic trait by virtue of strain dominance and/or pathogen inhibition in the mammalian intestine. The selection pressure applied on the bacterial population during antibiotic usage is the driving force for the emergence of antibiotic resistant bacteria. Identification of antibiotic resistant isolates opens up the possibility of using such probiotics to offset the problems caused by antibiotics to the gut microbiota and to improve the intestinal microbial environment. Future work is required to explore the culture collection housing thousands of bacterial isolates as a valuable source of potential probiotics for use for the elderly Irish community.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Eukaryotic genomes are mostly composed of noncoding DNA whose role is still poorly understood. Studies in several organisms have shown correlations between the length of the intergenic and genic sequences of a gene and the expression of its corresponding mRNA transcript. Some studies have found a positive relationship between intergenic sequence length and expression diversity between tissues, and concluded that genes under greater regulatory control require more regulatory information in their intergenic sequences. Other reports found a negative relationship between expression level and gene length and the interpretation was that there is selection pressure for highly expressed genes to remain small. However, a correlation between gene sequence length and expression diversity, opposite to that observed for intergenic sequences, has also been reported, and to date there is no testable explanation for this observation. To shed light on these varied and sometimes conflicting results, we performed a thorough study of the relationships between sequence length and gene expression using cell-type (tissue) specific microarray data in Arabidopsis thaliana. We measured median gene expression across tissues (expression level), expression variability between tissues (expression pattern uniformity), and expression variability between replicates (expression noise). We found that intergenic (upstream and downstream) and genic (coding and noncoding) sequences have generally opposite relationships with respect to expression, whether it is tissue variability, median, or expression noise. To explain these results we propose a model, in which the lengths of the intergenic and genic sequences have opposite effects on the ability of the transcribed region of the gene to be epigenetically regulated for differential expression. These findings could shed light on the role and influence of noncoding sequences on gene expression.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Phenotypic variation (morphological and pathogenic characters), and genetic variability were studied in 50 isolates of seven Plasmopara halstedii (sunflower downy mildew) races 100, 300, 304, 314, 710, 704 and 714. There were significant morphological, aggressiveness, and genetic differences for pathogen isolates. However, there was no relationship between morphology of zoosporangia and sporangiophores and pathogenic and genetic characteristics for the races used in our study. Also, our results provided evidence that no relation between pathogenic traits and multilocus haplotypes may be established in P. halstedii. The hypothesis explaining the absence of relationships among phenotypic and genetic characteristics is discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In order to clarify the role of Pl2 resistance gene in differentiation the pathogenicity in Plasmopara halstedii (sunflower downy mildew), analyses were carried out in four pathotypes: isolates of races 304 and 314 that do not overcome Pl2 gene, and isolates of races 704 and 714 that can overcome Pl2 gene. Based on the reaction for the P. halstedii isolates to sunflower hybrids varying only in Pl resistance genes, isolates of races 704 and 714 were more virulent than isolates of races 304 and 314. Index of aggressiveness was calculated for pathogen isolates and revealed the presence of significant differences between isolates of races 304 and 314 (more aggressive) and isolates of races 704 and 714 (less aggressive). There were morphological and genetic variations for the four P. halstedii isolates without a correlation with pathogenic diversity. The importance of the Pl2 resistance gene to differentiate the pathogenicity in sunflower downy mildew was discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hypoxia confers resistance to common cancer therapies, however, it has also has been shown to result in genetic alterations which may allow a survival advantage and increase the tumorigenic properties of cancer cells. Additionally, it may exert a selection pressure, allowing expansion of tumor cells with a more aggressive phenotype. To further assess the role of hypoxia in malignant progression in prostate cancer we exposed human androgen dependent prostate cancer cells (LNCaP) to cycles of chronic hypoxia and isolated a subline, LNCaP-H1. This article describes the partial characterization of this cell line. The LNCaP-H1 subline showed altered growth characteristics and exhibited androgen independent growth both in vitro and in vivo. Furthermore, these cells were resistant to mitochondrial-mediated apoptosis, probably since the endogenous levels of Bax was lower and Bcl-2 higher than in the parental LNCaP cells. Microarray analysis revealed that a complex array of pathways had differential gene expression between the 2 cell lines, with LNCaP-H1 cells exhibiting a genetic profile which suggests that they may be more likely metastasize to distant organs, especially bone. This was supported by an in vitro invasion assay, and an in vivo metastasis study. This study shows that hypoxia can select for androgen independent prostate cancer cells which have a survival advantage and are more likely to invade and metastasize.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pseudomonas elastase (LasB), a metalloprotease virulence factor, is known to play a pivotal role in pseudomonal infection. LasB is secreted at the site of infection, where it exerts a proteolytic action that spans from broad tissue destruction to subtle action on components of the host immune system. The former enhances invasiveness by liberating nutrients for continued growth, while the latter exerts an immunomodulatory effect, manipulating the normal immune response. In addition to the extracellular effects of secreted LasB, it also acts within the bacterial cell to trigger the intracellular pathway that initiates growth as a bacterial bio?lm. The key role of LasB in pseudomonal virulence makes it a potential target for the development of an inhibitor as an antimicrobial agent. The concept of inhibition of virulence is a recently established antimicrobial strategy, and such agents have been termed “second-generation” antibiotics. This approach holds promise in that it seeks to attenuate virulence processes without bactericidal action and, hence, without selection pressure for the emergence of resistant strains. A potent inhibitor of LasB,N-mercaptoacetyl-Phe-Tyr-amide (Ki 41 nM) has been developed, and its ability to block these virulence processes has been assessed. It has been demonstrated that thes compound can completely block the action of LasB on protein targets that are instrumental in bio?lm formation and immunomodulation. The novel LasB inhibitor has also been employed in bacterial-cell-based assays, to reduce the growth of pseudomonal bio?lms, and to eradicate bio?lm completely when used in combination with conventional antibiotics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

UNLABELLED: Influenza A viruses counteract the cellular innate immune response at several steps, including blocking RIG I-dependent activation of interferon (IFN) transcription, interferon (IFN)-dependent upregulation of IFN-stimulated genes (ISGs), and the activity of various ISG products; the multifunctional NS1 protein is responsible for most of these activities. To determine the importance of other viral genes in the interplay between the virus and the host IFN response, we characterized populations and selected mutants of wild-type viruses selected by passage through non-IFN-responsive cells. We reasoned that, by allowing replication to occur in the absence of the selection pressure exerted by IFN, the virus could mutate at positions that would normally be restricted and could thus find new optimal sequence solutions. Deep sequencing of selected virus populations and individual virus mutants indicated that nonsynonymous mutations occurred at many phylogenetically conserved positions in nearly all virus genes. Most individual mutants selected for further characterization induced IFN and ISGs and were unable to counteract the effects of exogenous IFN, yet only one contained a mutation in NS1. The relevance of these mutations for the virus phenotype was verified by reverse genetics. Of note, several virus mutants expressing intact NS1 proteins exhibited alterations in the M1/M2 proteins and accumulated large amounts of deleted genomic RNAs but nonetheless replicated to high titers. This suggests that the overproduction of IFN inducers by these viruses can override NS1-mediated IFN modulation. Altogether, the results suggest that influenza viruses replicating in IFN-competent cells have tuned their complete genomes to evade the cellular innate immune system and that serial replication in non-IFN-responsive cells allows the virus to relax from these constraints and find a new genome consensus within its sequence space.

IMPORTANCE: In natural virus infections, the production of interferons leads to an antiviral state in cells that effectively limits virus replication. The interferon response places considerable selection pressure on viruses, and they have evolved a variety of ways to evade it. Although the influenza virus NS1 protein is a powerful interferon antagonist, the contributions of other viral genes to interferon evasion have not been well characterized. Here, we examined the effects of alleviating the selection pressure exerted by interferon by serially passaging influenza viruses in cells unable to respond to interferon. Viruses that grew to high titers had mutations at many normally conserved positions in nearly all genes and were not restricted to the NS1 gene. Our results demonstrate that influenza viruses have fine-tuned their entire genomes to evade the interferon response, and by removing interferon-mediated constraints, viruses can mutate at genome positions normally restricted by the interferon response.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Parasites and pathogens are ubiquitous and act as an important selection pressure on animals. Here, drawing primarily on our own research, mostly on insects, we illustrate how host-parasite interactions have played a role in the evolution of a range of phenomena, including animal coloration, social behavior, foraging ecology, sexual selection, and life-history tradeoffs, as well as how variation in host behavior and ecology can drive variation in parasitism risk and host allocation of resources to immunity and other antiparasite defenses. We conclude by identifying key areas for future study.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cannibalism is ubiquitous in nature and especially pervasive in consumers with stage-specific resource utilization in resource-limited environments. Cannibalism is thus influential in the structure and functioning of biological communities. Parasites are also pervasive in nature and, we hypothesize, might affect cannibalism since infection can alter host foraging behaviour. We investigated the effects of a common parasite, the microsporidian Pleistophora mulleri, on the cannibalism rate of its host, the freshwater amphipod Gammarus duebeni celticus. Parasitic infection increased the rate of cannibalism by adults towards uninfected juvenile conspecifics, as measured by adult functional responses, that is, the rate of resource uptake as a function of resource density. This may reflect the increased metabolic requirements of the host as driven by the parasite. Furthermore, when presented with a choice, uninfected adults preferred to cannibalize uninfected rather than infected juvenile conspecifics, probably reflecting selection pressure to avoid the risk of parasite acquisition. By contrast, infected adults were indiscriminate with respect to infection status of their victims, probably owing to metabolic costs of infection and the lack of risk as the cannibals were already infected. Thus parasitism, by enhancing cannibalism rates, may have previously unrecognized effects on stage structure and population dynamics for cannibalistic species and may also act as a selective pressure leading to changes in resource use.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Predictions which invoke evolutionary mechanisms ar e hard to test. Agent-based modeling in artificial life offers a way to simulate behaviors and interac tions in specific physical or social environments o ver many generations. The outcomes have implications fo r understanding adaptive value of behaviors in context. Pain-related behavior in animals is communicated to other animals that might protect or help, or might exploit or predate. An agent-based model simulated the effects of displaying or not displaying pain (expresser/non-expresser strategies) when injured, and of helping, ignoring or exploiting another in pain (altruistic/non-altruistic/selfish strategies) . Agents modeled in MATLAB interacted at random while foraging (gaining energy); random injury inte rrupted foraging for a fixed time unless help from an altruistic agent, who paid an energy cost, speeded recovery. Environmental and social conditions also varied, and each model ran for 10,000 iterations. Findings were meaningful in that, in general, conti ngencies evident from experimental work with a variety of mammals, over a few interactions, were r eplicated in the agent-based model after selection pressure over many generations. More energy-demandi ng expression of pain reduced its frequency in successive generations, and increasing injury frequ ency resulted in fewer expressers and altruists. Allowing exploitation of injured agents decreased e xpression of pain to near zero, but altruists remained. Decreasing costs or increasing benefits o f helping hardly changed its frequency, while increasing interaction rate between injured agents and helpers diminished the benefits to both. Agent- based modeling allows simulation of complex behavio urs and environmental pressures over evolutionary time.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BackgroundThe great diversity of bat haemosporidians is being uncovered with the help of molecular tools. Yet most of these studies provide only snapshots in time of the parasites discovered. Polychromophilus murinus, a malaria-like blood parasite, specialised on temperate-zone bats is a species that is being `rediscovered¿. This study describes the infection dynamics over time and between host sex and age classes.MethodsFor three years we followed the members of three breeding colonies of Myotis daubentonii in Western Switzerland and screened them for the prevalence and parasitemia of P. murinus using both molecular tools and traditional microscopy. In order to identify more susceptible classes of hosts, we measured, sexed and aged all individuals. During one year, we additionally measured body temperature and haematocrit values.ResultsJuvenile bats demonstrated much higher parasitemia than any other age class sampled, suggesting that first exposure to the parasite is very early in life during which infections are also at their most intense. Moreover, in subadults there was a clear negative correlation between body condition and intensity of infection, whereas a weak positive correlation was observed in adults. Neither body temperature, nor haematocrit, two proxies used for pathology, could be linked to intensities of infection.ConclusionIf both weaker condition and younger age are associated with higher infection intensity, then the highest selection pressure exerted by P. murinus should be at the juvenile stage. Confusion over the identities and nomenclature of malarial-like parasites requires that molecular barcodes are coupled to accurate morphological descriptions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The antiviral potency of the cytokine IFN-α has been long appreciated but remains poorly understood. A number of studies have suggested that induction of the apolipoprotein B mRNA editing enzyme, catalytic polypeptide 3 (APOBEC3) and bone marrow stromal cell antigen 2 (BST-2/tetherin/CD317) retroviral restriction factors underlies the IFN-α-mediated suppression of HIV-1 replication in vitro. We sought to characterize the as-yet-undefined relationship between IFN-α treatment, retroviral restriction factors, and HIV-1 in vivo. APOBEC3G, APOBEC3F, and BST-2 expression levels were measured in HIV/hepatitis C virus (HCV)-coinfected, antiretroviral therapy-naïve individuals before, during, and after pegylated IFN-α/ribavirin (IFN-α/riba) combination therapy. IFN-α/riba therapy decreased HIV-1 viral load by -0.921 (±0.858) log(10) copies/mL in HIV/HCV-coinfected patients. APOBEC3G/3F and BST-2 mRNA expression was significantly elevated during IFN-α/riba treatment in patient-derived CD4+ T cells (P < 0.04 and P < 0.008, paired Wilcoxon), and extent of BST-2 induction was correlated with reduction in HIV-1 viral load during treatment (P < 0.05, Pearson's r). APOBEC3 induction during treatment was correlated with degree of viral hypermutation (P < 0.03, Spearman's ρ), and evolution of the HIV-1 accessory protein viral protein U (Vpu) during IFN-α/riba treatment was suggestive of increased BST-2-mediated selection pressure. These data suggest that host restriction factors play a critical role in the antiretroviral capacity of IFN-α in vivo, and warrant investigation into therapeutic strategies that specifically enhance the expression of these intrinsic immune factors in HIV-1-infected individuals.