964 resultados para MCF-7 Cells


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The epithelial calcium channel TRPV6 is upregulated in breast carcinoma compared with normal mammary gland tissue. The selective estrogen receptor modulator tamoxifen is widely used in breast cancer therapy. Previously, we showed that tamoxifen inhibits calcium uptake in TRPV6-transfected Xenopus oocytes. In this study, we examined the effect of tamoxifen on TRPV6 function and intracellular calcium homeostasis in MCF-7 breast cancer cells transiently transfected with EYFP-C1-TRPV6. TRPV6 activity was measured with fluorescence microscopy using Fura-2. The basal calcium level was higher in transfected cells compared with nontransfected cells in calcium-containing solution but not in nominally calcium-free buffer. Basal influxes of calcium and barium were also increased. In transfected cells, 10 mumol/L tamoxifen reduced the basal intracellular calcium concentration to the basal calcium level of nontransfected cells. Tamoxifen decreased the transport rates of calcium and barium in transfected cells by 50%. This inhibitory effect was not blocked by the estrogen receptor antagonist, ICI 182,720. Similarly, a tamoxifen-induced inhibitory effect was also observed in MDA-MB-231 estrogen receptor-negative cells. The effect of tamoxifen was completely blocked by activation of protein kinase C. Inhibiting protein kinase C with calphostin C decreased TRPV6 activity but did not alter the effect of tamoxifen. These findings illustrate how tamoxifen might be effective in estrogen receptor-negative breast carcinomas and suggest that the therapeutic effect of tamoxifen and protein kinase C inhibitors used in breast cancer therapy might involve TRPV6-mediated calcium entry. This study highlights a possible role of TRPV6 as therapeutic target in breast cancer therapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present article, we report on the semi-quantitative proteome analysis and related changes in protein expression of the MCF-7 breast cancer cell line following treatment with doxorubicin, using the precursor acquisition independent from ion count (PAcIFIC) mass spectrometry method. PAcIFIC represents a cost-effective and easy-to-use proteomics approach, enabling for deep proteome sequencing with minimal sample handling. The acquired proteomic data sets were searched for regulated Reactome pathways and Gene Ontology annotation terms using a new algorithm (SetRank). Using this approach, we identified pathways with significant changes (≤0.05), such as chromatin organization, DNA binding, embryo development, condensed chromosome, sequence-specific DNA binding, response to oxidative stress and response to toxin, as well as others. These sets of pathways are already well-described as being susceptible to chemotherapeutic drugs. Additionally, we found pathways related to neuron development, such as central nervous system neuron differentiation, neuron projection membrane and SNAP receptor activity. These later pathways might indicate biological mechanisms on the molecular level causing the known side-effect of doxorubicin chemotherapy, characterized as cognitive impairment, also called 'chemo brain'. Mass spectrometry data are available via ProteomeXchange with identifier PXD002998.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tissue transglutaminase (tTGase) is an enzyme that catalyzes the posttranslational modification of proteins via Ca2+-dependent cross-linking reactions. In this study, we extended our earlier observation that tTGase is highly expressed in MCF-7 human breast carcinoma cells selected for the multidrug resistance phenotype (MCF-7/DOX). To directly assess the involvement of tTGase in drug resistance, parental MCF-7 (MCF-7/WT) cells were transfected with cDNAs encoding either a catalytically active (wildtype) or inactive (mutant) tTGase protein. Expression of wildtype tTGase led to spontaneous apoptosis in MCF-7/WT cells, while the mutant tTGase was tolerated by the cells but did not confer resistance to doxorubicin. Analysis of calcium by a spectrofluorometric technique revealed that MCF-7/DOX cells exhibit a defective mechanism in intracellular calcium mobilization, which may play a role in preventing the in situ activation of tTGase and thus allowing the cells to grow despite expressing this enzyme. An elevation in intracellular calcium by treatment with the calcium ionophore A23187 induced rapid and substantial apoptosis in MCF-7/DOX cells as determined by morphological and biochemical criteria. Pretreatment of MCF-7/DOX cells with a tTGase-specific inhibitor (monodansylcadaverine) suppressed A12387-induced apoptosis, suggesting the possible involvement of tTGase-catalyzed protein cross-linking activity. A23187-induced apoptosis in MCF-7/DOX cells was further characterized by PARP cleavage and activation of downstream caspases (-3, -6, and -7). Another interesting aspect of tTGase/A23187-induced apoptosis in MCF-7/DOX cells was that these cells failed to show any prototypic changes associated with the mitochondrial (altered membrane potential, cytochrome c release, caspase-9 activation), receptor-induced (Bid cleavage), or endoplasmic reticulum-stressed (caspase-12 activation) apoptotic pathways. In summary, our data demonstrate that, despite being highly resistant to conventional chemotherapeutic drugs, MCF-7/DOX cells are highly sensitive to apoptosis induced by increased intracellular calcium. We conclude that tTGase does not play a direct role in doxorubicin resistance in MCF-7/DOX cells, but may play a role in enhancing the sensitivity of these cells to undergo apoptosis. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Arsenic trioxide appears to be effective in the treatment of pro-myelocytic leukaemia. The substituted phenylarsen(III)oxides are highly polar, they have a high tendency to undergo oxidation to As (V) and to form oligomers, to prevent this we protected the As-(OH)2 group as cyclic dithiaarsanes. To increase the compound's biological stability and passive diffusion we conjugated the compound of interest with lipoamino acids (Laas). Alternatively, we further conjugated the dithiaarsane derivative with a carbohydrate to utilize active transport systems and to target compound. We investigated two novel glyco-lipid arsenicals (III) (compounds 9 and 11) for their ability to initiate MCF-7 breast cancer cell death and characterized the mechanism by which death was initiated. A significant decrease in MCF-7 cell proliferation was observed using 1 μM and 10 μM compound (11) and 10 μM of compound (9). Treatment with compound (11) triggered apoptosis of MFC-7 cells while compound (9) induced inhibition of cellular proliferation was not via rapid induction of apoptosis and more likely reflected necrosis and/ or alterations in the cell cycle. Differences in the anti-proliferative potency of the two compounds indicate that structural modifications influence effectiveness. © 2006 Bentham Science Publishers Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptors involved in various metabolic diseases. In the liver, PPARα is involved in alcohol metabolism and may lead to the development of alcoholic fatty liver and other alcohol mediated liver injuries. PPARβ modulation by ethanol induces abnormal myelin production by oligodendrocytes. PPARα and PPARβ are PPAR isoforms expressed in the human breast cell lines. Epidemiological studies show a positive correlation between alcohol intake and breast cancer risk, however, the molecular mechanisms involved are unclear. We hypothesized that ethanol would affect the expression and transactivation of human PPAR isoforms in estrogen receptor (ER) positive and ER negative breast cancer cells. Using real time RT-PCR we looked at the transcription of PPAR isoforms in the presence of increasing concentrations of ethanol and saw isoform and time dependent specific effects. Gene reporter assays enabled us to ascertain the effects of ethanol on ligand-mediated activation of human PPARα and PPARβ at concentrations equivalent to both moderate and chronic alcohol consumption. Ethanol differentially blocked the ligand-mediated activation of both PPARα and PPARβ. Since PPARα and PPARβ are involved in the differentiation and proliferation of breast cancer cells, PPARs may be a possible mechanism involved in the effect of ethanol in breast cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present study, we investigated the mechanisms of apoptosis resistance and the roles of the phosphorylation of BRCA1, p21, the Bax/Bcl-2 protein ratio and cell cycle arrest in IR-induced apoptosis in MCF-7 cells. X-irradiation, in particular at low dose (1 Gy), but not carbon ion irradiation, had a significant antiproliferative effect on the growth of MCF-7 cells. 1 Gy X-irradiation resulted in G1 and G2 phase arrest, but 4 Gy induced a significant G1 block. In contrast, carbon ion irradiation resulted in a significant accumulation in the G2 phase. Concomitant with the phosphorylation of H2AX induced by DNA damage,carbon ion irradiation resulted in an approximately 1.9–2.8-fold increase in the phosphorylation of BRCA1 on serine residue 1524, significantly greater than that detected for X-irradiation. Carbon ion irradiation caused a dramatic increase in p21 expression and drastic decrease in Bax expression compared with X-irradiation. The data implicated that phosphorylation of BRCA1 on serine residue 1524 might,at least partially, induce p21 expression but repress Bax expression. Together, our results suggested that the phosphorylation of BRCA1 at Ser-1524 might contribute to the G2 phase arrest and might be an upstream signal involved in preventing apoptosis signal via upregulation of p21 and downregulation of the Bax/Bcl-2 ratio.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Epidemiological studies have shown that ingestion of isoflavone-rich soy products is associated with a reduced risk for the development of breast cancer. In the present study, we investigated the hypothesis that genistein modulates the expression of glutathione S-transferases (GSTs) in human breast cells, thus conferring protection towards genotoxic carcinogens which are GST substrates. Our approach was to use human mammary cell lines MCF-10A and MCF-7 as models for non-neoplastic and neoplastic epithelial breast cells, respectively. MCF-10A cells expressed hGSTA1/2, hGSTA4-4, hGSTM1-1 and hGSTP1-1 proteins, but not hGSTM2-2. In contrast, MCF-7 cells only marginally expressed hGSTA1/2, hGSTA4-4 and hGSTM1-1. Concordant to the protein expression, the hGSTA4 and hGSTP1 mRNA expression was higher in the non-neoplastic cell line. Exposure to genistein significantly increased hGSTP1 mRNA (2.3-fold), hGSTP1-1 protein levels (3.1-fold), GST catalytic activity (4.7-fold) and intracellular glutathione concentrations (1.4-fold) in MCF-10A cells, whereas no effects were observed on GST expression or glutathione concentrations in MCF-7 cells. Preincubation of MCF-10A cells with genistein decreased the extent of DNA damage by 4-hydroxy-2-nonenal (150 mu M) and benzo(a)pyrene-7,8-dihydrodiol-9,10-epoxide (50 mu M), compounds readily detoxified by hGSTA4-4 and hGSTP1-1. In conclusion, genistein pretreatment protects non-neoplastic mammary cells from certain carcinogens that are detoxified by GSTs, suggesting that dietary-mediated induction of GSTs may be a mechanism contributing to prevention against genotoxic injury in the aetiology of breast cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

N-(2-Hydroxypropyl)methacrylamide (HPMA) copolymer–doxorubicin (Dox) has already shown clinical activity in breast cancer patients. Moreover, we have recently found that an HPMA conjugate containing a combination of both Dox and the aromatase inhibitor aminoglutethimide (AGM) shows significantly increased anti-tumour activity in vitro. To better understand the mechanism of action of HPMA copolymer–AGM conjugates several models were used here to investigate their effect on cell growth and aromatase inhibition. Cytotoxicity of HPMA copolymer conjugates containing AGM, Dox and also the combination AGM–Dox was determined by MTT assay in MCF-7 and MCF-7ca cells. Androstenedione (5 × 10− 8 M) stimulates the growth of MCF-7ca cells. Both free AGM and polymer-bound AGM (0.2–0.4 mg/ml) were shown to block this mitogenic activity. When MCF-7ca cells were incubated [3H]androstenedione both AGM and HPMA copolymer–GFLG–AGM (0.2 mg/ml AGM-equiv.) showed the ability to inhibit aromatase. Although, free AGM was able to inhibit isolated human placental microsomal aromatase in a concentration dependent manner, polymer-bound AGM was not, suggesting that drug release is essential for activity of the conjugate. HPMA copolymer conjugates containing aromatase inhibitors have potential for the treatment of hormone-dependant cancers, and it would be particularly interesting to explore further as potential therapies in post-menopausal women as components of combination therapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ConA-induced cell surface activation of pro-matrix metalloproteinase-2 (pro-MMP-2) by MDA-MB-231 human breast cancer cells is apparently mediated by up-regulation of membrane type 1 MMP (MT1-MMP) through transcriptional and posttranscriptional mechanisms. Here, we have explored the respective roles of cell surface clustering and protein tyrosine phosphorylation in the ConA- induction effects. Treatment with succinyl-ConA, a variant lacking significant clusterability, partially stimulated MT1-MMP mRNA and protein levels but did not induce MMP-2 activation, suggesting that clustering contributes to the transcriptional regulation by ConA but appears to be critical for the nontranscriptional component. We further found that genistein, an inhibitor of tyrosine phosphorylation, blocked ConA-induced pro-MMP-2 activation and ConA-induced MT1-MMP mRNA level in a dose-dependent manner, implicating tyrosine phosphorylation in the transcriptional aspect. This was confirmed by the dose-dependent promotion of pro-MMP-2 activation by sodium orthovanadate in the presence of suboptimal concentrations of ConA (7.5 μg/ml), with optimal effects seen at 25 μg/g orthovanadate. Genistein did not inhibit the ConA potentiation of MMP-2 activation in MCF-7 cells, in which transfected MT1-MMP is driven by a heterologous promoter, supporting the major implication of phosphotyrosine in the transcriptional component of ConA regulation. These data describe a major signaling event upstream of MT1- MMP induction by ConA and set the stage for further analysis of the nontranscriptional component.