957 resultados para MC-LR-Cys
Resumo:
用 10 μg/L的微囊藻毒素LR(Microcystin LR ,MC LR)处理鲤肝细胞培养物 ,检测鲤肝细胞抗氧化系统的 6项指标。结果表明 ,MC LR处理后活性氧 (ROS)含量明显升高 ,还原型谷胱甘肽 (GSH)含量迅速下降 ,超氧化物歧化酶(SOD)、过氧化氢酶 (CAT)的活性明显升高 ,谷胱甘肽过氧化物酶 (GSH Px)活性在MC LR处理 15min后也有明显上升 ,但谷胱甘肽S 转移酶 (GST)活性在MC LR处理后没有明显变化。另外 ,还从氧自由基理论解释了微囊藻毒素造成鲤肝
Resumo:
从滇池蓝藻水华中分离得到的铜锈微囊藻群体在实验室无机营养中解聚成单细胞 ,结果表明 ,群体微囊藻的生长速度明显低于单细胞微囊藻 ;前者具明显可见的胞外酸性多糖胶鞘 ,而单细胞则几乎没有 ;按常规方法分析比较两种细胞形态的毒性大小和毒素组成 ,发现群体微囊藻主要含有三种微囊藻毒素的异构体 ,而单细胞以MC LR为主 ;且单细胞微囊藻的毒性约为群体的 1 0倍。二者的LDH和PGM同工酶酶谱也有差异。本研究为解释毒素的合成和调控机理提供了新的证据
Resumo:
微囊藻毒素是有害的蓝藻水华释放的有毒代谢物 ,对人类及环境具有很大危害性。建立了固相萃取 高效液相色谱测定水中痕量藻毒素的方法。该法对两种常见微囊藻毒素MC LR、MC RR的检测限为 0 .0 2~ 0 .0 5 μg/L ,线性定量范围为 0 .1~ 5 0 μg/L。应用该法分析了天然水样 ,表明方法具有实用性
Resumo:
An indirect inhibitive surface plasmon resonance (SPR) immunoassay was developed for the microcystins (MCs) detection. The bioconjugate of MC-LR and bovine serum albumin (BSA) was immobilized on a CM5 sensor chip. A serial premixture of MC-LR standards (or samples) and monoclonal antibody (mAb) were injected over the functional sensor surface, and the subsequent specific immunoreaction was monitored on the BIAcore 3000 biosensor and generated a signal with an increasing intensity in response to the decreasing MCs concentration. The developed SPR immunoassay has a wide quantitative range in 1-100 mu g L-1. Although not as sensitive as conventional enzyme-linked immunosorbent assay (ELISA), the SPR biosensor offered unique advantages: (I) the sensor chip could be reusable without any significant loss in its binding activity after 50 assay-regeneration cycles, (2) one single assay could be accomplished in 50 min (including 30-min preincubation and 20-min BIAcore analysis), and (3) this method did not require multiple steps. The SPR biosensor was also used to detect MCs in environmental samples, and the results compared well with those obtained by ELISA. We conclude that the SPR biosensor offers outstanding advantages for the MCs detection and may be further developed as a field-portable sensor for real-time monitoring of MCs on site in the near future. (C) 2009 Published by Elsevier B.V.
Resumo:
Objective To investigate the hispathological characteristics and antioxidant responses in liver of silver carp after intraperitoneal administration of microcystins (MCs) for further understanding hepatic intoxication and antioxidation mechanism in fish. Methods Phytoplanktivorous silver carp was injected intraperitoneally (i.p.) with extracted hepatotoxic microcystins (mainly MC-RR and -LR) at a dose of 1000 mu g MC-LReq./kg body weight, and liver histopathological changes and antioxidant responses were studied at 1, 3, 12, 24, and 48 h, respectively, after injection. Results The damage to liver structure and the activities of hepatic antioxidant enzymes including catalase (CAT), superoxide dismutase (SOD), and glutathione peroxide (GPX) were increased in a time-dependent manner. Conclusion In terms of clinical and histological signs of intoxication and LD50 (i.p.) dose of MC-LR, silver carp appears rather resistant to MCs exposure than other fishes. Also, the significantly increased SOD activity in the liver of silver carp suggests a higher degree of response to MCs exposure than CAT and GPX.
Resumo:
In this paper, accumulation and distribution of microcystins (MCs) was examined monthly in six species of fish with different trophic levels in Meiliang Bay, Lake Taihu, China, from June to November 2005, Microcystins were analyzed by liquid chromatography electrospray ionization mass spectrometry (LC-ESI-MS). Average recoveries of spiked fish samples were 67.7% for MC-RR, 85.3% for MC-YR, and 88.6% for MC-LR. The MCs (MC-RR+MC-YR+MC-LR) concentration in liver and gut content was highest in phytoplanktivorous fish, followed by omnivorous fish, and was lowest in carnivorous fish; while MCs concentration in muscle was highest in omnivorous fish, followed by phytoplanktivorous fish, and was lowest in carnivorous fish. This is the first study reporting MCs accumulation in the gonad of fish in field. The main uptake of MC-YR in fish seems to be through the gills from the dissolved MCs. The WHO limit for tolerable daily intake was exceeded only in common carp muscle. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Oxidative stress response after prolonged exposure to a low dose of microcystins (MCs) was studied in liver, kidney and brain of domestic rabbits. Rabbits were treated with extracted MCs (mainly MC-LR and MC-RR) at a dose of 2 MC-LReq. mu g/kg body weight or saline solution every 24 h for 7 or 14 days. During the exposure of MCs, increase of lipid peroxidation (LPO) levels were detected in all the organs studied, while antioxidant enzymes responded differently among different organs. The enzyme activities Of Superoxide dismutase (SOD). catalase (CAT) and glutathione reductase (GR) in liver decreased in the MCs treated animals. In brain, there were obvious changes in glutathione peroxidase (GPx) and GR, while only CAT was obviously influenced in kidney. Therefore, daily exposure at a lower dosage of MCs, which mimicked a natural route of MCs. could also induce obvious oxidative stress in diverse organs of domestic rabbits. The oxidative stress induced by MCs in brain was as serious as in liver and kidney, suggesting that brain may also be a target of MCs in mammals. And it seems that animals may have more time to metabolize the toxins or to form an adaptive response to reduce the adverse effects when exposed to the low dose of MCs. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Microcystins (MCs) are a potent liver tumor promoter, possessing potent tumor-promoting activity and weak initiating activity. Proto-oncogenes are known to be involved in the tumor-promoting mechanisms of microcystin-LR. However, few data are available on the effects of MCs oil proto-oncogenes in the whole animal. To investigate the effects of MCs on the expression profile of the proto-oncogenes in different organs, male Wistar rats were injected intravenously with microcystin extracts at a dose of 86.7 mu g MC-LR eq/kg bw (MC-LR eq, MC-LR equivalents). mRNA levels of three proto-oncogenes c-fos, c-jun and c-myc in liver, kidney and testis were analyzed using quantitative real-time PCR at several time points post-injection. Significant induction of these genes at transcriptional level was observed in the three organs. In addition, the increase of mRNA expression of all three genes was much higher in liver than in kidney and testis. Meanwhile, the protein levels of c-Fos and c-Jun were investigated by western blotting. Both proteins were induced in the three organs. However, elevations of protein levels were Much lower than those of mRNA levels. These findings suggest that the expression of c-fos, c-jun and c-myc might be one possible mechanism for the tumor-promoting activity and initiating activity of microcystins. (c) 2008 Published by Elsevier Ltd.
Resumo:
In this paper, spatial and temporal variations of three common microcystins (MC-RR, MC-YR, and MC-LR) in the hepatopancreas of a freshwater snail (Bellamya aeruginosa) were studied monthly in two bays of Lake Taihu. Microcystins (MCs) concentration in hepatopancreas was quantified by liquid chromatography-mass spectrometry (LC-MS). The MCs concentrations in hepatopancreas were higher at Site 1 than those at other sites, which was in agreement with the changes of intracellular MCs concentrations in the water column. There was a significant correlation between MCs concentrations in the hepatopancreas and that in the seston, suggesting that spatial variances of MCs; concentrations in hepatopancreas among the five sites were due to spatial changes of toxic Microcystis cells in the water column. PCCA indicates that in addition to Microcystis, other factors (e.g., water temperature) also substantially affected the accumulation of MCs in hepatopancreas of the snail. (C) 2008 Published by Elsevier Inc.
Resumo:
Healthy crucian carp (Carassius auratus) were treated by intraperitoneal (i.p.) injection of crude cyanobacterial extracts at two doses, 50 and 200 mu g MC-LR equiv kg(-1) BW. High mortality (100%) was observed within 60 h post injection in the high-dose group. In the treated fish, activities of four plasma enzymes, alanine aminotransferase (ALT), alkaline phosphatase (ALP), aspartate aminotransferase (AST), and lactate dehydrogenase (LDH), all showed substantial increases, with both dose and time-dependent effects. These increases of enzyme activity indicate severe impairment occurred in the liver of crucian carp over time. Plasma concentrations of energy-related biomolecules including glucose (GLU), cholesterol (CHO), triglyceride (TG), and total protein (TP) showed marked changes in the high-dose group, possibly a nutritional imbalance correlated with the liver injury caused by intraperitoneal exposure to crude cyanobacterial extracts.
Resumo:
Microcystins (MCs) are a family of related cyclic hepatotoxic heptapeptides, of which more than 70 types have been identified. The chemically unique nature of the C20 beta-amino acid, (2S, 3S, 8S, 9S)-3-amino-9-methoxy-2,6,8-trimethyl-10-phenyldeca4,6-dienoic acid (Adda), portion of the MCs has been exploited to develop a strategy to analyze the entirety. Oxidation of MCs causes the cleavage of MC Adda to form 2-methyl-3-methoxy-4-phenylbutanoic acid (MMPB). In the present study, we investigated the kinetics of MMPB produced by oxidation of the most-often-studied MC variant, MC-LR (L = leucine, R = arginine), with permanganate-periodate. This investigation allowed insight regarding the influence of the reaction conditions (concentration of the reactants, temperature, and pH) on the conversion rate. The results indicated that the reaction was second order overall and first order with respect to both permanganate and MC-LR. The second-order rate constant ranged from 0.66 to 1.35 M/s at temperatures from 10 to 30 degrees C, and the activation energy was 24.44 kJ/mol. The rates of MMPB production can be accelerated through increasing reaction temperature and oxidant concentration, and sufficient periodate is necessary for the formation of MMPB. The initial reaction rate under alkaline and neutral conditions is higher than that under acidic conditions, but the former decreases faster than the latter except under weakly acidic conditions. These results provided new insight concerning selection of the permanganate-periodate concentration, pH, and temperature needed for the oxidation of MCs with a high and stable yield of MMPB.
Resumo:
An acute toxicity experiment was conducted by intraperitoneal injection with a sublethal dose of extracted microcystins (MCs), 50 mu g MC-LR (where L = leucine and R = arginine) equivalent/kg body weight (BW), to examine tissue distribution and depuration of MCs in crucian carp (Carassius carassius). Liver to body weight ratio increased at 3, 12, 24, and 48 h postinjection compared with that at 0 h (p < 0.05). MC concentrations in various tissues and aquaria water were analyzed at 1, 3, 12, 24, 48, and 168 h postinjection using liquid chromatography coupled with mass spectrometry (LC-MS). The highest concentration of MCs (MC-RR + MC-LR) was found in blood, 2 -270 ng/g dry weight (DW), followed by heart (3 -100 ng/g DW) and kidney (13 -88 ng/g DW). MC levels were relatively low in liver, gonad, intestine, spleen, and brain. MC contents in gills, gallbladder, and muscle were below the limit of detection. Significant negative correlation was present between MC-RR concentration in blood and that in kidney, confirming that blood was important in the transportation of MC-RR to kidney for excretion. Rapid accumulation and slow degradation of MCs were observed in gonad, liver, intestine, spleen, and brain. Only 0.07% of injected MCs were detected in liver. The recovery of MCs in liver of crucian carp seemed to be dose dependent.
Resumo:
Gel filtration chromatography, ultra-filtration, and solid-phase extraction silica gel clean-up were evaluated for their ability to remove microcystins selectively from extracts of cyanobacteria Spirulina samples after using the reversed-phase octadecylsilyl ODS cartridge for subsequent analysis by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). The reversed-phase ODS cartridge/silica gel combination were effective and the optimal wash and elution conditions were: H2O (wash), 20% methanol in water (wash), and 90% methanol in water (elution) for the reversed-phase ODS cartridge, followed by 80% methanol in water elution in the silica gel cartridge. The presence of microcystins in 36 kinds of cyanobacteria Spirulina health food samples obtained from various retail outlets in China were detected by LC-MS/MS, and 34 samples (94%) contained microcystins ranging from 2 to 163 ng g(-1) (mean=1427 ng g(-1)), which were significantly lower than microcystins present in blue green alga products previously reported. MC-RR-which contains two molecules of arginine (R)-(in 94.4% samples) was the predominant microcystin, followed by MC-LR-where L is leucine-(30.6%) and MC-YR-where Y is tyrose-(27.8%). The possible potential health risks from chronic exposure to microcystins from contaminated cyanobacteria Spirulina health food should not be ignored, even if the toxin concentrations were low. The method presented herein is proposed to detect microcystins present in commercial cyanobacteria Spirulina samples.
Resumo:
Microcystin (MC) problem made more and more care about in China, intercellular MC (Int-MC) and cellular MC (Cel-MC) were important contents to reflect the producing-MC ability by cyanobacteria and by lakes. To study the correlations between Int-MC, Cel-MC concentration and biological and environmental factors, eight cyanobacterial blooming lakes were studied in the middle and lower reaches of the Yangtze River. Microcystin-RR (MC-RR) and Microcystin-LR (MC-LR) were the primary toxin variants in our data. From the linear correlations between MC and environmental factors, cellular-YR had significant correlation with most of chemical factors except total nitrogen (TN) and the ratio of total nitrogen and total phosphorus (TN/TP), most intracellular MC analogues had significant correlations with total dissolved nitrogen (TDN), ammonium (NH4+), nitrite (NO2-), TP, total dissolved phosphorus (TDP), Microcystis. From the canonal correspondence analysis, Int-MC concentrations were closely related with the chemical and biological factors, such as TP, total organic carbon (TOC), chlorophyll a (Chl a), Microcystis biomass, et al. While Cel-MC contents, especially Cel-RR and Cel-LR, were closely related with light environmental in the lakes such as water depth and transparence.
Resumo:
An acute toxicity experiment was conducted to examine the distribution and depuration of microcystins (MCS) in crucian carp (Carassius aurutus) tissues. Fish were injected intraperitoneally with extracted MCs at a dose of 200 mu g MC-LR (where L = leucine and R = arginine) equivalent/kg body weight. Microcystin concentrations in various tissues and aquaria water were analyzed at 1, 3, 12, 24, and 48 h postinjection using liquid chromatography coupled with mass spectrometry. Microcystins were detected mainly in blood (3.99% of injected dose at 1 h), liver (1.60% at I h), gonad (1.49% at 3 h), and kidney (0.14% at 48 h). Other tissues, such as the heart, gill, gallbladder, intestine, spleen, brain, and muscle, contained less than 0.1% of the injected MCs. The highest concentration of MCs was found in blood (526-3,753 ng/g dry wt), followed by liver (103-1,656 ng/g dry wt) and kidney (279-1,592 ng/g dry wt). No MC-LR was detectable in intestine, spleen, kidney, brain, and muscle, whereas MC-RR was found in all examined fish tissues, which might result from organ specificity of different MCs. Clearance of MC-RR in brain tissue was slow. In kidney, the MC-RR content was negatively correlated with that in blood, suggesting that blood was important in the transportation of MC-RR to kidney for excretion.