994 resultados para Intermittent Exercise


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The main objective of this study was to analyze the reliability of blood lactate concentration ([La]), oxygen uptake (VO2) and heart rate (FC) in an intermittent protoco, performed at 95%VO2max with passive or active recovery in untrained subjects. Participated of this study, active healthy males with 20 to 25 years, which were doing aerobic exercises witha weekly frequency of 3 sessions at least. The individulas performed, in different days, the following protocols in a cyclergometer: 1) An incremental test until exhaustion to determine maximal oxygen uptake (VO2max) and the intensity at VO2max; b) Two transitions at 95%VO2max for the determination of the VO2 kinetics parameters and; c) Two intermittent tests until exhaustion, with repetitions at 95% IVO2max and with durantion defined as being half of the duration of the slow component. The duration of the recovery was half of the duration of the effort (effort:pause of 2:1). This test was performed with passive (GP) and active recovery (GA). The VO2 and FC were measured continulously in both tests. Blood collections were performed for the determination of the [La]. There was significant correlação in both groups for VO2 (ATIVA - 0.94, PASSIVA - 0.75), [La] (ATIVA - 0.83, PASSIVA - 0.90) and FC (0.93) only for the passive group. Thus, it can be concluded that the cardiorrespiratory and metabolic responses present good realiability in an intermittent exercise with active or passive recovery

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The objective of this study was to compare the power corresponding to maximal lactate steady state determined through continuous (MLSSC) and intermittent protocol with active recovery (MLSSI). Ten trained male cyclists (25 ± 4 yr, 72.5 ± 10.6 kg, 178.5 ± 4.0 cm), performed the following tests on different days on a cycle ergometer: (1) incremental test in order to determine the anaerobic threshold (AT) and maximal power (Pmax); (2) two to five constant workload tests to determine MLSSC, and; 3) two to three constant workload tests to determine MLSSI, consisting on 8 x 4 minutes bouts interspersed by two minutes of active recovery at 50% Pmax (i.e., 46 min of exercise protocol). MLSS intensity was defined as the highest workload at which blood lactate concentration did not increase by more than 1 mM between minutes 10 and 30 of the constant workload. The workload corresponding to MLSSC (273.2 ± 21.4 W) was significantly lower than that corresponding to MLSSI (300.5 ± 23.9 W). With base on these data, it can be verified that the intermittent exercise mode utilized in this study, allows an increase of 10% approximately, in the exercise intensity corresponding to MLSS.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Soccer is characterized as a sport that has exercises such as jumping, high-intensity and easy running, directional changes among, and other things. These features characterize soccer as an intermittent exercise. Nutrition along with proper exercise programs can be an excellent tool for the success or failure of the team in a championship. The nutrition, when properly oriented, can decrease fatigue of athletes and also optimize their recovery level, which may result in maintenance of performance along with less risk of injury. This study researched in database Pubmed, Scielo and Bireme, using the following words: futebol, nutrição, carboidrato, carbohydrate, soccer, and nutrition. Carbohydrate is a macronutrient used as energy source for performing exercise and its prevalence is varied according to both volume and intensity of exercise. In soccer, there is recommendation for carbohydrate intake before exercise in order to increase the availability of blood glucose, which in turn results in exercise improved capacity. In addition, carbohydrate intake during exercise increases the rapid replacement of all muscle glycogen reserves lost. Finally, the post-exercise consumption is important in the recovery of several nutritional factors such as muscle glycogen restoration, replacement of fluids and also electrolytes. In this sense, a well-oriented carbohydrate intake will result in improved athlete performance, and than may also promotes the success of their team at the end of the championship

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tennis played at an elite level requires intensive training characterized by repeated bouts of brief intermittent high intensity exercise over relatively long periods of time (1 - 3 h or more). Competition can place additional stress on players. The purpose of this study was to investigate the temporal association between specific components of tennis training and competition, the incidence of upper respiratory tract infections (URT1), and salivary IgA, in a cohort of seventeen elite female tennis players. Timed, whole unstimulated saliva samples were collected before and after selected 1-h training sessions at 2 weekly intervals, over 12 weeks. Salivary IgA concentration was measured by ELISA and IgA secretion rate calculated (mug IgA x ml(-1) x ml saliva x min(-1)). Players reported URTI symptoms and recorded training and competition in daily logs. Data analysis showed that higher incidence of URTI was significantly associated with increased training duration and load, and competition level, on a weekly basis. Salivary IgA secretion rate (S-IgA) dropped significantly after 1 hour of tennis play. Over the 12-week period, pre-exercise salivary IgA concentration and secretion rate were directly associated with the amount of training undertaken during the previous day and week (p < 0.05). However, the decline in S-IgA after 1 h of intense tennis play was also positively related to the duration and load of training undertaken during the previous day and week (p < 0.05). Although exercise-induced suppression of salivary IgA may be a risk factor, it could not accurately predict the occurrence of URTI in this cohort of athletes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Purpose: To assess the effects of pre-cooling volume on neuromuscular function and performance in free-paced intermittent-sprint exercise in the heat. Methods: Ten male, teamsport athletes completed four randomized trials involving an 85-min free-paced intermittentsprint exercise protocol in 33°C±33% relative humidity. Pre-cooling sessions included whole body (WB), head+hand (HH), head (H) and no cooling (CONT), applied for 20-min pre-exercise and 5-min mid exercise. Maximal voluntary contractions (MVC) were assessed pre- and postintervention and mid- and post-exercise. Exercise performance was assessed with sprint times, % decline and distances covered during free-paced bouts. Measures of core(Tc) and skin (Tsk) temperatures, heart rate, perceptual exertion and thermal stress were monitored throughout. Venous and capillary blood was analyzed for metabolite, muscle damage and inflammatory markers. Results: WB pre-cooling facilitated the maintenance of sprint times during the exercise protocol with reduced % decline (P=0.04). Mean and total hard running distances increased with pre cooling 12% compared to CONT (P<0.05), specifically, WB was 6-7% greater than HH (P=0.02) and H (P=0.001) respectively. No change was evident in mean voluntary or evoked force pre- to post-exercise with WB and HH cooling (P>0.05). WB and HH cooling reduced Tc by 0.1-0.3°C compared to other conditions (P<0.05). WB Tsk was suppressed for the entire session(P=0.001). HR responses following WB cooling were reduced(P=0.05; d=1.07) compared to CONT conditions during exercise. Conclusion: A relationship between pre-cooling volume and exercise performance seems apparent, as larger surface area coverage augmented subsequent free-paced exercise capacity, in conjunction with greater suppression of physiological load. Maintenance of MVC with pre-cooling, despite increased work output suggests the role of centrally-mediated mechanisms in exercise pacing regulation and subsequent performance.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study examined the effects of pre-cooling duration on performance and neuromuscular function for self-paced intermittent-sprint shuttle running in the heat. Eight male, team-sport athletes completed two 35-min bouts of intermittent-sprint shuttle running separated by a 15-min recovery on three separate occasions (33°C, 34% relative humidity). Mixed-method pre-cooling was completed for 20 min (COOL20), 10-min (COOL10) or no cooling (CONT) and reapplied for 5-min mid-exercise. Performance was assessed via sprint times, percentage decline and shuttle-running distance covered. Maximal voluntary contractions (MVC), voluntary activation (VA) and evoked twitch properties were recorded pre- and post-intervention and mid- and post-exercise. Core temperature (T c), skin temperature, heart rate, capillary blood metabolites, sweat losses, perceptual exertion and thermal stress were monitored throughout. Venous blood draws pre- and post-exercise were analyzed for muscle damage and inflammation markers. Shuttle-running distances covered were increased 5.2 ± 3.3% following COOL20 (P < 0.05), with no differences observed between COOL10 and CONT (P > 0.05). COOL20 aided in the maintenance of mid- and post-exercise MVC (P < 0.05; d > 0.80), despite no conditional differences in VA (P > 0.05). Pre-exercise T c was reduced by 0.15 ± 0.13°C with COOL20 (P < 0.05; d > 1.10), and remained lower throughout both COOL20 and COOL10 compared to CONT (P < 0.05; d > 0.80). Pre-cooling reduced sweat losses by 0.4 ± 0.3 kg (P < 0.02; d > 1.15), with COOL20 0.2 ± 0.4 kg less than COOL10 (P = 0.19; d = 1.01). Increased pre-cooling duration lowered physiological demands during exercise heat stress and facilitated the maintenance of self-paced intermittent-sprint performance in the heat. Importantly, the dose-response interaction of pre-cooling and sustained neuromuscular responses may explain the improved exercise performance in hot conditions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study examined the effects of post-exercise cooling on recovery of neuromuscular, physiological, and cerebral hemodynamic responses after intermittent-sprint exercise in the heat. Nine participants underwent three post-exercise recovery trials, including a control (CONT), mixed-method cooling (MIX), and cold-water immersion (10 °C; CWI). Voluntary force and activation were assessed simultaneously with cerebral oxygenation (near-infrared spectroscopy) pre- and post-exercise, post-intervention, and 1-h and 24-h post-exercise. Measures of heart rate, core temperature, skin temperature, muscle damage, and inflammation were also collected. Both cooling interventions reduced heart rate, core, and skin temperature post-intervention (P < 0.05). CWI hastened the recovery of voluntary force by 12.7 ± 11.7% (mean ± SD) and 16.3 ± 10.5% 1-h post-exercise compared to MIX and CONT, respectively (P < 0.01). Voluntary force remained elevated by 16.1 ± 20.5% 24-h post-exercise after CWI compared to CONT (P < 0.05). Central activation was increased post-intervention and 1-h post-exercise with CWI compared to CONT (P < 0.05), without differences between conditions 24-h post-exercise (P > 0.05). CWI reduced cerebral oxygenation compared to MIX and CONT post-intervention (P < 0.01). Furthermore, cooling interventions reduced cortisol 1-h post-exercise (P < 0.01), although only CWI blunted creatine kinase 24-h post-exercise compared to CONT (P < 0.05). Accordingly, improvements in neuromuscular recovery after post-exercise cooling appear to be disassociated with cerebral oxygenation, rather reflecting reductions in thermoregulatory demands to sustain force production.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Prolonged intermittent-sprint exercise (i.e., team sports) induce disturbances in skeletal muscle structure and function that are associated with reduced contractile function, a cascade of inflammatory responses, perceptual soreness, and a delayed return to optimal physical performance. In this context, recovery from exercise-induced fatigue is traditionally treated from a peripheral viewpoint, with the regeneration of muscle physiology and other peripheral factors the target of recovery strategies. The direction of this research narrative on post-exercise recovery differs to the increasing emphasis on the complex interaction between both central and peripheral factors regulating exercise intensity during exercise performance. Given the role of the central nervous system (CNS) in motor-unit recruitment during exercise, it too may have an integral role in post-exercise recovery. Indeed, this hypothesis is indirectly supported by an apparent disconnect in time-course changes in physiological and biochemical markers resultant from exercise and the ensuing recovery of exercise performance. Equally, improvements in perceptual recovery, even withstanding the physiological state of recovery, may interact with both feed-forward/feed-back mechanisms to influence subsequent efforts. Considering the research interest afforded to recovery methodologies designed to hasten the return of homeostasis within the muscle, the limited focus on contributors to post-exercise recovery from CNS origins is somewhat surprising. Based on this context, the current review aims to outline the potential contributions of the brain to performance recovery after strenuous exercise.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Peripheral artery disease (PAD) is one of the most common manifestations of systemic atherosclerosis. It is estimated that 10-15% of the general population is affected by PAD, whereby the narrowed arteries lead to reduced blood flow to the extremeties - particularly the legs. While many people have mild or no systems with PAD, approximately one-third of people experience intermittent claudication (IC).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Athletes commonly attempt to enhance performance by training in normoxia but sleeping in hypoxia [live high and train low (LHTL)]. However, chronic hypoxia reduces muscle Na+-K+-ATPase content, whereas fatiguing contractions reduce Na+-K+-ATPase activity, which each may impair performance. We examined whether LHTL and intense exercise would decrease muscle Na+-K+-ATPase activity and whether these effects would be additive and sufficient to impair performance or plasma K+ regulation. Thirteen subjects were randomly assigned to two fitness-matched groups, LHTL (n = 6) or control (Con, n = 7). LHTL slept at simulated moderate altitude (3,000 m, inspired O2 fraction = 15.48%) for 23 nights and lived and trained by day under normoxic conditions in Canberra (altitude ~600 m). Con lived, trained, and slept in normoxia. A standardized incremental exercise test was conducted before and after LHTL. A vastus lateralis muscle biopsy was taken at rest and after exercise, before and after LHTL or Con, and analyzed for maximal Na+-K+-ATPase activity [K+-stimulated 3-O-methylfluorescein phosphatase (3-O-MFPase)] and Na+-K+-ATPase content ([3H]ouabain binding sites). 3-O-MFPase activity was decreased by –2.9 ± 2.6% in LHTL (P < 0.05) and was depressed immediately after exercise (P < 0.05) similarly in Con and LHTL (–13.0 ± 3.2 and –11.8 ± 1.5%, respectively). Plasma K+ concentration during exercise was unchanged by LHTL; [3H]ouabain binding was unchanged with LHTL or exercise. Peak oxygen consumption was reduced in LHTL (P < 0.05) but not in Con, whereas exercise work was unchanged in either group. Thus LHTL had a minor effect on, and incremental exercise reduced, Na+-K+-ATPase activity. However, the small LHTL-induced depression of 3-O-MFPase activity was insufficient to adversely affect either K+ regulation or total work performed.