997 resultados para Brain repair
Resumo:
A human and a mouse gene have been isolated based on homology to a recombinational repair gene from the corn smut Ustilago maydis. The new human (h) gene, termed hREC2, bears striking resemblance to several others, including hRAD51 and hLIM15. hREC2 is located on human chromosome 14 at q23–24. The overall amino acid sequence reveals characteristic elements of a RECA-like gene yet harbors an src-like phosphorylation site curiously absent from hRAD51 and hLIM15. Unlike these two relatives, hREC2 is expressed in a wide range of tissues including lung, liver, placenta, pancreas, leukocytes, colon, small intestine, brain, and heart, as well as thymus, prostate, spleen, and uterus. Of greatest interest is that hREC2 is undetectable by reverse transcription-coupled PCR in tissue culture unless the cells are treated by ionizing radiation.
Resumo:
Spermatogenic cells exhibit a lower spontaneous mutation frequency than somatic tissues in a lacI transgene and many base excision repair (BER) genes display the highest observed level of expression in the testis. In this study, uracil-DNA glycosylase-initiated BER activity was measured in nuclear extracts prepared from tissues obtained from each of three mouse strains. Extracts from mixed spermatogenic germ cells displayed the greatest activity followed by liver then brain for all three strains, and the activity for a given tissue was consistent among the three strains. Levels of various BER proteins were examined by western blot analyses and found to be consistent with activity levels. Nuclear extracts prepared from purified Sertoli cells, a somatic component of the seminiferous epithelium, exhibited significantly lower activity than mixed spermatogenic cell-type nuclear extracts, thereby suggesting that the high BER activity observed in mixed germ cell nuclear extracts was not a characteristic of all testicular cell types. Nuclear extracts from thymocytes and small intestines were assayed to assess activity in a mitotically active cell type and tissue. Overall, the order of tissues/cells exhibiting the greatest to lowest activity was mixed germ cells > Sertoli cells > thymocytes > small intestine > liver > brain.
Resumo:
The human Xrcc3 protein is involved in the repair of damaged DNA through homologous recombination, in which homologous pairing is a key step. The Rad51 protein is believed to be the only protein factor that promotes homologous pairing in recombinational DNA repair in mitotic cells. In the brain, however, Rad51 expression is extremely low, whereas XRCC3, a human homologue of Saccharomyces cerevisiae RAD57 that activates the Rad51-dependent homologous pairing with the yeast Rad55 protein, is expressed. In this study, a two-hybrid analysis conducted with the use of a human brain cDNA library revealed that the major Xrcc3-interacting protein is a Rad51 paralog, Rad51C/Rad51L2. The purified Xrcc3⋅Rad51C complex, which shows apparent 1:1 stoichiometry, was found to catalyze the homologous pairing. Although the activity is reduced, the Rad51C protein alone also catalyzed homologous pairing, suggesting that Rad51C is a catalytic subunit for homologous pairing. The DNA-binding activity of Xrcc3⋅Rad51C was drastically decreased in the absence of Xrcc3, indicating that Xrcc3 is important for the DNA binding of Xrcc3⋅Rad51C. Electron microscopic observations revealed that Xrcc3⋅Rad51C and Rad51C formed similar filamentous structures with circular single-stranded DNA.
Resumo:
Neurons in the developing brain die via apoptosis after DNA damage, while neurons in the adult brain are generally resistant to these insults. The basis for this resistance is a matter of conjecture. We report here that cerebellar granule neurons (CGNs) in culture lose their competence to die in response to DNA damage as a function of time in culture. CGNs at either 1 day in vitro (DIV) or 7 DIV were treated with the DNA damaging agents camptothecin, UV or gamma-irradiation and neuronal survival measured. The younger neurons were effectively killed by these agents, while the older neurons displayed a significant resistance to killing. Neuronal survival did not change with time in culture when cells were treated with C2-ceramide or staurosporine, agents which do not target DNA. The resistance to UV irradiation developed over time in culture and was not due to changes in mitotic rate. Increases in DNA strand breakage, up-regulation of the levels of both p53 and its phosphorylated form and nuclear translocation of p53 were equivalent in both older and younger neurons, indicating a comparable p53 stress response. In addition, we show that treatment of older neurons with pharmacological inhibitors of distinct components of the DNA repair machinery promotes the accumulation of DNA damage and sensitizes these cells to the toxic effects of UV exposure. These data demonstrate that older neurons appear to be more proficient in DNA repair in comparison to their younger counterparts, and that this leads to increased survival after DNA damage.
Resumo:
Abstract : 5-Methylcytosine is an epigenetic mark, which can be oxidized to 5-hydroxymethylcytosine (5hmC) in DNA by ten-eleven translocation (TET) oxygenases. It is an initial step in the demethylation of 5mC. Levels of 5hmC is relatively high in the brain compared to other organs, but these levels are known to be significantly reduced during the development of a brain tumor, especially in glioblastoma multiforme (GBM). However, no known mechanisms may fully explain this abnormality. The objectives of my project were to (1) understand the implications of the demethylation pathway mediated by TET, and (2) gain a deeper insight in the epigenetic make-up of brain tumors. (1) U87 cells were incubated with 5mC, 5hmC, 5-formylcytosine (5fC) or co-incubated of 5hmC with 3,4,5,6-tetrahydro-2’-deoxyuridine (dTHU) over a timeline of 0, 24, 48 and 96 hours. (2) 130 brain tumors (GBM= 79; grade II/III= 51) were obtained directly from surgery and immediately suspended in DNA extraction buffer. Both cell samples and tumor tissues underwent DNA extraction and DNA digestion protocols. The percent per cytosine (%/C) was obtained by quantification of 5mC, 5hmC, 5fC, 5-hydroxymethyluracil (5hmU) and 5formyluracil (5fU) using LC-MS/MS. (1) Cellular incubations showed that it is possible to increase levels of 5hmC in DNA, but also a slight increase in 5mC levels throughout the experiment. 5HmC levels dramatically increased by 1.9-fold after 96h. On the other hand, no increase was observed in 5fC levels. Both 5hmC and 5fC incubations were accompanied by high increases in 5hmU and 5fU levels respectively. The addition of dTHU to the 5hmC incubation decreased 5hmU incorporation by 65%. (2) The average levels of 5mC, 5hmC and 5fC, in brain tumors, were 4.0, 0.15 and 0.021 %/C respectively. 5HmU and 5fU levels were present at comparable levels of 5hmC and 5fC. Levels of 5hmC, 5hmU and 5fU were significantly lower in the DNA of GBM specimens. There was a strong correlation between 5mC with 5hmC and 5fC in GBM, but this was absent in low grade tumors. The presence of 5hmU and 5fU in brain tumor and the increase in their levels during cell incubations indicate a deamination activity in these cancerous cells, which may impinge on the cellular levels of 5hmC, in particular. Furthermore, upon the incubations with 5hmC, downstream levels of 5fC did not increase suggesting a TET malfunction. TET activity is maintained in GBMs, but impaired in low grade tumors due to isocitrate dehydrogenase-1 (IDH1) mutations. Therefore, in brain tumors, a strong deamination activity and TET impairment may lead to epigenetic reduction of 5hmC.
Resumo:
'The Millennial Adolescent' offers contemporary, stimulating insights for those currently teaching as well as those preparing to teach. This book investigates the characteristics of Generation Y, using students own voices, generational theory and case studies. The text is structured around the principle that effective teachers need to know who they are teaching as well as what to teach, how to teach it, and how to assess the outcome. Using generational theory, 'The Millennial Adolescent' investigates the characteristics of Generation Y, or the Millennial Generation, and points out what all teachers need to know about working with this current generation of students who are described in a number of ways digital natives, team oriented, confident, multi-taskers, high achievers, and a generation unlike any other. The book contains well-known frameworks for developing understandings about adolescents, blended and contrasted with a contemporary socio-cultural construction of adolescence, set in our particular time, era and society. This book reflects the uniqueness of Australian contexts, while connecting with international trends and global patterns. Engaging and full of insights, this book is essential reading for all professionals dealing with adolescents.
Resumo:
Articular cartilage is a highly hydrated tissue with depth-dependent cellular and matrix properties that provide low-friction load bearing in joints. However, the structure and function are frequently lost and there is insufficient repair response to regenerate high-quality cartilage. Several hydrogel-based tissue-engineering strategies have recently been developed to form constructs with biomimetic zonal variations to improve cartilage repair. Modular hydrogel systems allow for systematic control over hydrogel properties, and advanced fabrication techniques allow for control over construct organization. These technologies have great potential to address many unanswered questions involved in prescribing zonal properties to tissue-engineered constructs for cartilage repair.
Resumo:
Statistics indicate that the percentage of fatal industrial accidents arising from repair, maintenance, minor alteration and addition (RMAA) works in Hong Kong was disturbingly high and was over 56% in 2006. This paper provides an initial report of a research project funded by the Research Grants Council (RGC) of the HKSAR to address this safety issue. The aim of this study is to scrutinize the causal relationship between safety climate and safety performance in the RMAA sector. It aims to evaluate the safety climate in the RMAA sector; examine its impacts on safety performance, and recommend measures to improve safety performance in the RMAA sector. This paper firstly reports on the statistics of construction accidents arising from RMAA works. Qualitative and quantitative research methods applied in conducting the research are dis-cussed. The study will critically review these related problems and provide recommendations for improving safety performance in the RMAA sector.
Resumo:
Currently, well-established clinical therapeutic approaches for bone reconstruction are restricted to the transplantation of autografts and allografts, and the implantation of metal devices or ceramic-based implants to assist bone regeneration. Bone grafts possess osteoconductive and osteoinductive properties, however they are limited in access and availability and associated with donor site morbidity, haemorrhage, risk of infection, insufficient transplant integration, graft devitalisation, and subsequent resorption resulting in decreased mechanical stability. As a result, recent research focuses on the development of alternative therapeutic concepts. The field of tissue engineering has emerged as an important approach to bone regeneration. However, bench to bedside translations are still infrequent as the process towards approval by regulatory bodies is protracted and costly, requiring both comprehensive in vitro and in vivo studies. The subsequent gap between research and clinical translation, hence commercialization, is referred to as the ‘Valley of Death’ and describes a large number of projects and/or ventures that are ceased due to a lack of funding during the transition from product/technology development to regulatory approval and subsequently commercialization. One of the greatest difficulties in bridging the Valley of Death is to develop good manufacturing processes (GMP) and scalable designs and to apply these in pre-clinical studies. In this article, we describe part of the rationale and road map of how our multidisciplinary research team has approached the first steps to translate orthopaedic bone engineering from bench to bedside byestablishing a pre-clinical ovine critical-sized tibial segmental bone defect model and discuss our preliminary data relating to this decisive step.
Resumo:
In the filed of semantic grid, QoS-based Web service scheduling for workflow optimization is an important problem.However, in semantic and service rich environment like semantic grid, the emergence of context constraints on Web services is very common making the scheduling consider not only quality properties of Web services, but also inter service dependencies which are formed due to the context constraints imposed on Web services. In this paper, we present a repair genetic algorithm, namely minimal-conflict hill-climbing repair genetic algorithm, to address scheduling optimization problems in workflow applications in the presence of domain constraints and inter service dependencies. Experimental results demonstrate the scalability and effectiveness of the genetic algorithm.
Resumo:
This combined PET and ERP study was designed to identify the brain regions activated in switching and divided attention between different features of a single object using matched sensory stimuli and motor response. The ERP data have previously been reported in this journal [64]. We now present the corresponding PET data. We identified partially overlapping neural networks with paradigms requiring the switching or dividing of attention between the elements of complex visual stimuli. Regions of activation were found in the prefrontal and temporal cortices and cerebellum. Each task resulted in different prefrontal cortical regions of activation lending support to the functional subspecialisation of the prefrontal and temporal cortices being based on the cognitive operations required rather than the stimuli themselves.
Resumo:
To further investigate the use of DNA repair-enhancing agents for skin cancer prevention, we treated Cdk4R24C/R24C/NrasQ61K mice topically with the T4 endonuclease V DNA repair enzyme (known as Dimericine) immediately prior to neonatal ultraviolet radiation (UVR) exposure, which has a powerful effect in exacerbating melanoma development in the mouse model. Dimericine has been shown to reduce the incidence of basal-cell and squamous cell carcinoma. Unexpectedly, we saw no difference in penetrance or age of onset of melanoma after neonatal UVR between Dimericine-treated and control animals, although the drug reduced DNA damage and cellular proliferation in the skin. Interestingly, epidermal melanocytes removed cyclobutane pyrimidine dimers (CPDs) more efficiently than surrounding keratinocytes. Our study indicates that neonatal UVR-initiated melanomas may be driven by mechanisms other than solely that of a large CPD load and/or their inefficient repair. This is further suggestive of different mechanisms by which UVR may enhance the transformation of keratinocytes and melanocytes.
Resumo:
In the field of semantic grid, QoS-based Web service composition is an important problem. In semantic and service rich environment like semantic grid, the emergence of context constraints on Web services is very common making the composition consider not only QoS properties of Web services, but also inter service dependencies and conflicts which are formed due to the context constraints imposed on Web services. In this paper, we present a repair genetic algorithm, namely minimal-conflict hill-climbing repair genetic algorithm, to address the Web service composition optimization problem in the presence of domain constraints and inter service dependencies and conflicts. Experimental results demonstrate the scalability and effectiveness of the genetic algorithm.